Problem B. Odd Discount

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

In the store of ICPCCamp, there are n items to be sold with m bundles offered.
The i-th bundle is described by c_{i} and k_{i} distinct integers $a_{i, 1}, a_{i, 2}, \ldots, a_{i, k_{i}}$. It means that one gets c_{i} dollars discount if among the $a_{i, 1}, a_{i, 2}, \ldots, a_{i, k_{i}}$-th items, he buys exactly odd number of them. Bundles can be combined.
Bobo wants to buy a non-empty subset of the items. It is clear there are ($2^{n}-1$) different sets for him. Find out $\left(d_{1}^{2}+d_{2}^{2}+\cdots+d_{2^{n}-1}^{2}\right)$ modulo $\left(10^{9}+7\right)$ where d_{i} is the sum of discount for the i-th set.

Input

The first line contains 2 integers $n, m\left(1 \leq n \leq 20,1 \leq m \leq 10^{5}\right)$.
The i-th of the following m lines contains integers c_{i}, k_{i}, followed by k_{i} integers $a_{i, 1}, a_{i, 2}, \ldots, a_{i, k_{i}}$ $\left(1 \leq c_{i} \leq 10^{4}, 1 \leq a_{i, 1}, a_{i, 2}, \ldots, a_{i, k_{i}} \leq n\right)$.

Output

An integer denotes $\left(d_{1}^{2}+d_{2}^{2}+\cdots+d_{2^{n}-1}^{2}\right)$ modulo $\left(10^{9}+7\right)$.

Examples

$\left.\begin{array}{|lll|ll|}\hline & & \text { standard input } & & \text { standard output } \\ \hline 2 & 2 & & 14 & \\ 1 & 1 & 1 & & \\ 2 & 2 & 1 & 2 & 1\end{array}\right)$

Note

In the first sample, there are 3 possibilities for Bobo.

- He buys the first item and uses both bundles.
- He buys the second item and uses the second bundle solely.
- He buys both items and uses the first bundle.

Therefore, $d_{1}=3, d_{2}=2, d_{3}=1$ and $d_{1}^{2}+d_{2}^{2}+d_{3}^{2}=14$.

