Problem C. Eight Queens

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

In ICPCC amp, there is a chessboard with \boldsymbol{n} rows and \boldsymbol{m} columns.

Bobo places k distinguishable queens in k different cells on the chessboard. There are $t = \binom{n \times m}{k}$ different configurations where

$$\binom{n}{k} = \frac{n(n-1)\dots(n-k+1)}{k(k-1)(k-2)\dots 1}$$

If c_i is the number of cells attacked by at least one queen in the *i*-th configuration, find out $(c_1+c_2+\cdots+c_t)$ modulo (10^9+7) .

Note that a queen can attack all cells in the same row, column and diagonal including the cell she stands on.

Input

3 integers $n, m, k \ (1 \le n, m \le 10^9, 1 \le k \le \min\{n \times m, 8\}).$

Output

An integer denotes $(c_1 + c_2 + \cdots + c_t) \mod (10^9 + 7)$.

Examples

standard input	standard output
2 2 2	24
888	723759469