Problem C. Eight Queens

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

In ICPCCamp, there is a chessboard with n rows and m columns.
Bobo places k distinguishable queens in k different cells on the chessboard. There are $t=\binom{n \times m}{k}$ different configurations where

$$
\binom{n}{k}=\frac{n(n-1) \ldots(n-k+1)}{k(k-1)(k-2) \ldots 1} .
$$

If c_{i} is the number of cells attacked by at least one queen in the i-th configuration, find out $\left(c_{1}+c_{2}+\cdots+c_{t}\right)$ modulo $\left(10^{9}+7\right)$.
Note that a queen can attack all cells in the same row, column and diagonal including the cell she stands on.

Input

3 integers $n, m, k\left(1 \leq n, m \leq 10^{9}, 1 \leq k \leq \min \{n \times m, 8\}\right)$.

Output

An integer denotes $\left(c_{1}+c_{2}+\cdots+c_{t}\right)$ modulo $\left(10^{9}+7\right)$.

Examples

standard input	standard output		
2	2	2	24
8	8	8	723759469

