Problem F. Floyd-Warshall

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	1024 megabytes

In ICPCCamp, there are n cities and m (bidirectional) roads between cities. The *i*-th road is between the a_i -th city and the b_i -th city. There may be roads connecting a citie to itself and multiple roads between the same pair of cities.

Bobo has q travel plans. The *i*-th plan is to travel from the u_i -th city to the v_i -th city. He would like to know the smallest number of roads needed to travel for each plan. It is guaranteed that cities are connected.

Input

The first line contains 3 integers n, m, q $(1 \le n \le 10^5, 0 < m - n < 100, 1 \le q \le 10^5)$.

The *i*-th of the following *m* lines contains 2 integers $a_i, b_i \ (1 \le a_i, b_i \le n)$.

The *i*-th of the last q lines contains 2 integers $u_i, v_i \ (1 \le u_i, v_i \le n)$.

Output

n lines with integers l_1, l_2, \ldots, l_n . l_i denotes the smallest number of roads travelling from city u_i to city v_i .

standard input standard output 4 5 3 0 1 2 1 1 3 2 1 4 23 34 2 2 23 2 4 1 2 1 0 1 1 1 1 1 1

Examples