Problem F. Floyd-Warshall

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
1024 megabytes

In ICPCCamp, there are n cities and m (bidirectional) roads between cities. The i-th road is between the a_{i}-th city and the b_{i}-th city. There may be roads connecting a citie to itself and multiple roads between the same pair of cities.
Bobo has q travel plans. The i-th plan is to travel from the u_{i}-th city to the v_{i}-th city. He would like to know the smallest number of roads needed to travel for each plan. It is guaranteed that cities are connected.

Input

The first line contains 3 integers $n, m, q\left(1 \leq n \leq 10^{5}, 0<m-n<100,1 \leq q \leq 10^{5}\right)$.
The i-th of the following m lines contains 2 integers $a_{i}, b_{i}\left(1 \leq a_{i}, b_{i} \leq n\right)$.
The i-th of the last q lines contains 2 integers $u_{i}, v_{i}\left(1 \leq u_{i}, v_{i} \leq n\right)$.

Output

n lines with integers $l_{1}, l_{2}, \ldots, l_{n}$. l_{i} denotes the smallest number of roads travelling from city u_{i} to city v_{i}.

Examples

	standard input		standard output
4	5	3	0
1	2	1	
1	3	2	
1	4		
2	3		
3	4		
2	2		
2	3		
2	4		
1	2	1	
1	1	1	
1	1		

