Problem G. Road History

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Bobo is studying the history of roads in ICPCCamp. In ICPCCamp, there are n cities with m bidirectional roads. The *i*-th road connects the a_i -th and b_i -th cities.

There were no roads initially. Eventually, roads were built in the order $1, 2, \ldots m$.

Bobo would like to know the number of pairs of cities which allow an *odd drive* after the *i*-th road was built. An *odd drive* between cities u and v is possible only if there exists v_1, v_2, \ldots, v_{2k} for some positive integers k such that $v_1 = u, v_{2k} = v$ and there is a road connecting cities v_i and v_{i+1} . Passing by a city more than once is allowed.

Input

The first line contains 2 integers $n, m \ (1 \le n, m \le 10^5)$.

The *i*-th of the following *m* lines contains 2 integers $a_i, b_i \ (1 \le a_i, b_i \le n)$.

Output

m lines with integers w_1, w_2, \ldots, w_m where w_i denotes the number of pairs allowing an odd drive after the *i*-th road was built.

Examples

standard input	standard output
3 3	1
1 2	2
2 3	3
3 1	
4 3	1
1 2	2
3 4	4
2 3	