Problem G. Road History

Input file: standard input
Output file: standard output
Time limit: 1 second
Memory limit: 1024 megabytes
Bobo is studying the history of roads in ICPCCamp. In ICPCCamp, there are n cities with m bidirectional roads. The i-th road connects the a_{i}-th and b_{i}-th cities.

There were no roads initially. Eventually, roads were built in the order $1,2, \ldots m$.
Bobo would like to know the number of pairs of cities which allow an odd drive after the i-th road was built. An odd drive between cities u and v is possible only if there exists $v_{1}, v_{2}, \ldots, v_{2 k}$ for some positive integers k such that $v_{1}=u, v_{2 k}=v$ and there is a road connecting cities v_{i} and v_{i+1}. Passing by a city more than once is allowed.

Input

The first line contains 2 integers $n, m\left(1 \leq n, m \leq 10^{5}\right)$.
The i-th of the following m lines contains 2 integers $a_{i}, b_{i}\left(1 \leq a_{i}, b_{i} \leq n\right)$.

Output

m lines with integers $w_{1}, w_{2}, \ldots, w_{m}$ where w_{i} denotes the number of pairs allowing an odd drive after the i-th road was built.

Examples

	standard input		standard output
3	3	1	
1	2	2	
2	3	3	
3	1		
4	3	1	
1	2	2	
3	4	3	4

