Problem H. Around the World

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

In ICPCCamp, there are n cities and ($n-1$) (bidirectional) roads between cities. The i-th road is between the a_{i}-th and b_{i}-th cities. It is guaranteed that cities are connected.
Recently, there are $2 \times c_{i}-1$ new roads built between the a_{i}-th and b_{i}-th cities. Bobo soon comes up with an idea to travel around the world! He plans to start in city 1 and returns to city 1 after traveling along every road exactly once.
It is clear that Bobo has many plans to choose from. He would like to find out the number of different plans, modulo $\left(10^{9}+7\right)$.
Note that two plans A and B are considered different only if there exists an i where the i-th traveled road in plan A is different from the i-th road in plan B.

Input

The first line contains an integer $n\left(2 \leq n \leq 10^{5}\right)$.
The i-th of the following $(n-1)$ lines contains 3 integers a_{i}, b_{i}, c_{i} $\left(1 \leq a_{i}, b_{i} \leq n, c_{i} \geq 1, c_{1}+c_{2}+\cdots+c_{n-1} \leq 10^{6}\right)$.

Output

An integer denotes the number of plans modulo $\left(10^{9}+7\right)$.

Examples

	standard input			
3		4	standard output	
1	2	1		
2	3	1	144	
3				
1	2	1		
1	3	2		

