Problem I. Longest Increasing Subsequence

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Bobo is tired of all kinds of hard LIS (Longest Increasing Subsequence) problems, so he decides to make himself some easier one.

Bobo wants to build a sequence of integers $\{x_1, x_2, \ldots, x_n\}$, where x_i lies in the range $[a_i, b_i]$ (that is, $a_i \leq x_i \leq b_i$).

Let LIS(X) be the length of longest increasing subsequence of $\{x_1, x_2, \ldots, x_n\}$. It's clear that $1 \leq LIS(X) \leq n$. Bobo would like to find g_k which is the number of sequences whose LIS(X) = k for $k = 1, 2, \ldots, n$.

Note that a sequence $\{i_1, i_2, \ldots, i_k\}$ is a increasing sequence of $\{a_1, a_2, \ldots, a_n\}$ only if:

- $1 \le i_1 < i_2 < \dots < i_k \le n$
- $a_{i_1} < a_{i_2} < \dots < a_{i_k}$

Input

The first line contains an integer $n \ (1 \le n \le 5)$.

The *i*-th of the following *n* lines contains 2 integers a_i, b_i $(1 \le a_i \le b_i \le 10^3)$.

Output

n integers g_1, g_2, \ldots, g_n .

Examples

standard input	standard output
2	3 1
1 2	
1 2	
3	0 0 1
1 1	
2 2	
3 3	