Problem I. Longest Increasing Subsequence

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
1024 megabytes

Bobo is tired of all kinds of hard LIS (Longest Increasing Subsequence) problems, so he decides to make himself some easier one.

Bobo wants to build a sequence of integers $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$, where x_{i} lies in the range $\left[a_{i}, b_{i}\right]$ (that is, $\left.a_{i} \leq x_{i} \leq b_{i}\right)$.

Let $\operatorname{LIS}(X)$ be the length of longest increasing subsequence of $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. It's clear that $1 \leq \operatorname{LIS}(X) \leq n$. Bobo would like to find g_{k} which is the number of sequences whose $\operatorname{LIS}(X)=k$ for $k=1,2, \ldots, n$.

Note that a sequence $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ is a increasing sequence of $\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ only if:

- $1 \leq i_{1}<i_{2}<\cdots<i_{k} \leq n$
- $a_{i_{1}}<a_{i_{2}}<\cdots<a_{i_{k}}$

Input

The first line contains an integer $n(1 \leq n \leq 5)$.
The i-th of the following n lines contains 2 integers $a_{i}, b_{i}\left(1 \leq a_{i} \leq b_{i} \leq 10^{3}\right)$.

Output

n integers $g_{1}, g_{2}, \ldots, g_{n}$.

Examples

	standard input		standard output	
2		3	1	
1	2			
1	2		0	1
3	1			
2	2			
3	3			

