Problem J. Matrix Transformation

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	1024 megabytes

Bobo has a matrix of n rows and n columns. The rows are numbered by $0, 1, \ldots, (n-1)$ from top to bottom, and the columns are numbered by $0, 1, \ldots, (n-1)$ from left to right. The cell in the intersection of the *i*-th row and the *j*-th column is denoted as (i, j). For each cell (i, j), there is a number $i \times n + j$ written in.

Bobo is going to perform q transformations successively. The transformations are of 2 kinds. The *i*-th transformation is of t_i -th kind, and it's described by 3 parameters l_i, r_i, d_i .

If $t_i = 1$, the number in cell $(x, (y + d_i) \mod n)$ where $l_i \le x \le r_i, 0 \le y < n$ will be transferred to the cell (x, y) by the transformation.

If $t_i = 2$, the number in cell $((x + d_i) \mod n, y)$ where $0 \le x < n, l_i \le y \le r_i$ will be transferred to the cell (x, y) by the transformation.

Note that $a \mod b$ means the remainder of a after division by b.

Bobo would like to know the final configuration of the matrix.

Input

The first line contains 2 integers n, q $(1 \le n \le 200, 1 \le q \le 10^5)$.

The *i*-th of the following q lines contains 4 integers t_i, l_i, r_i, d_i $(t_i \in \{1, 2\}, 0 \le l_i \le r_i < n, 0 \le d_i < n)$.

Output

n lines. The *i*-th line contains *n* integers $a_{i,0}, a_{i,1}, \ldots, a_{i,n-1}$ which denotes the final number in cell (i, j).

Examples

standard input	standard output
3 2	052
1 1 1 1	473
2 1 1 1	6 1 8
3 1	1 2 0
1 0 2 1	4 5 3
	786