
Problem D. Double Shortest Paths

Alice and Bob are walking in an ancient maze with a lot of caves and one-way passages connecting them. They want to go from cave 1 to cave n. All the passages are difficult to pass. Passages are too small for two people to walk through simultaneously, and crossing a passage can make it even more difficult to pass for the next person. We define d_i as the difficulty of crossing passage i for the first time, and a_i as the additional difficulty for the second time (e.g. the second person's difficulty is d_i+a_i).

Your task is to find two (possibly identical) routes for Alice and Bob, so that their total difficulty is minimized.

For example, in figure 1, the best solution is 1->2->4 for both Alice and Bob, but in figure 2, it's better to use 1->2->4 for Alice and 1->3->4 for Bob.

Input

There will be at most 200 test cases. Each case begins with two integers n, m (1<=n<=500, 1<=m<=2000), the number of caves and passages. Each of the following m lines contains four integers u, v, d_i and a_i (1<=u,v<=n, 1<= d_i <=1000, 0<= a_i <=1000). Note that there can be multiple passages connecting the same pair of caves, and even passages connecting a cave and itself.

Output

For each test case, print the case number and the minimal total difficulty.

Sample Input Output for Sample Input

4 4		(Case 1:	23		
1 2 5	1	(Case 2:	24		
2 4 6	0					
1 3 4	0					
3 4 9	1					
4 4						
1 2 5	10					
2 4 6	10					
1 3 4	10					
3 4 9	10					