Problem F Funny Car Racing

There is a funny car racing in a city with n junctions and m directed roads．
The funny part is：each road is open and closed periodically．Each road is associate with two integers (a, b) ，that means the road will be open for a seconds，then closed for b seconds，then open for a seconds．．．All these start from the beginning of the race．You must enter a road when it＇s open，and leave it before it＇s closed again．

Your goal is to drive from junction s and arrive at junction t as early as possible．Note that you can wait at a junction even if all its adjacent roads are closed．

Input

There will be at most 30 test cases．The first line of each case contains four integers $\mathrm{n}, \mathrm{m}, \mathrm{s}, \mathrm{t}(1<=\mathrm{n}<=300$ ， $1<=m<=50,000,1<=s, t<=n)$ ．Each of the next m lines contains five integers $u, v, a, b, t\left(1<=u, v<=n, 1<=a, b, t<=10^{5}\right)$ ，that means there is a road starting from junction u ending with junction v ．It＇s open for a seconds，then closed for b seconds （and so on）．The time needed to pass this road，by your car，is t ．No road connects the same junction，but a pair of junctions could be connected by more than one road．

Output

For each test case，print the shortest time，in seconds．It＇s always possible to arrive at t from s ．

Sample Input \quad Output for the Sample Input

| 3 | 2 | 1 | 3 | | Case 1： 20 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 2 | 5 | 6 | 3 | |
| 2 | 3 | 7 | 7 | 6 | |
| 3 | 2 | 1 | 3 | | |
| 1 | 2 | 5 | 6 | 3 | |
| 2 | 3 | 9 | 5 | 6 | |\quad Case 2： 9

