Problem F It's Surely Complex

Time Limit: 30 seconds

As you know, a complex number is often represented as the sum of a real part and an imaginary part. $3+2 i$ is such an example, where 3 is the real part, 2 is the imaginary part, and i is the imaginary unit.

Given a prime number p and a positive integer n, your program for this problem should output the product of all the complex numbers satisfying the following conditions.

- Both the real part and the imaginary part are non-negative integers less than or equal to n.
- At least one of the real part and the imaginary part is not a multiple of p.

For instance, when $p=3$ and $n=1$, the complex numbers satisfying the conditions are $1(=1+0 i), i(=0+1 i)$, and $1+i(=1+1 i)$, and the product of these numbers, that is, $1 \times i \times(1+i)$ is $-1+i$.

Input

The input consists of a single test case of the following format.

$$
p n
$$

p is a prime number less than $5 \times 10^{5} . n$ is a positive integer less than or equal to 10^{18}.

Output

Output two integers separated by a space in a line. When the product of all the complex numbers satisfying the given conditions is $a+b i$, the first and the second integers should be a modulo p and b modulo p, respectively. Here, x modulo y means the integer z between 0 and $y-1$, inclusive, such that $x-z$ is divisible by y.

As exemplified in the main section, when $p=3$ and $n=1$, the product to be calculated is $-1+i$. However, since -1 modulo 3 is 2,2 and 1 are displayed in Sample Output 1.
Sample Input $1 \quad$ Sample Output 1

31	21

Sample Input 2
Sample Output 2

55	00

Sample Input $3 \quad$ Sample Output 3

4999791000000000000000000	4862920

