
2016 Taiwan Online Programming Contest

Problem D
Edsger Dijkstra

Time limit: 2 seconds
Memory limit: 256 megabytes

Problem Description
The Turing award winner Edsger Wybe Dijkstra is a dutch computer scientist who has an an-
noyingly confusing name that Asians have trouble pronouncing. In 1960s, He gave the following
quote.

For a number of years I have been familiar with the observation that the quality of
programmers is a decreasing function of the density of go to statements in the pro-
grams they produce. More recently I discovered why the use of the go to statement
has such disastrous effects, and I became convinced that the go to statement should
be abolished from all “higher level” programming languages.

You don’t want to produce low quality codes, do you? However, your source code contains no
loop statements. The only kind of flow control statements in your source code is the if-goto.
To decrease the density, you have to try and eliminate all the if-goto statements in your
source code written in a C-like language and replace them with do-while loops in the following
manner.

• Assume the if-goto statement looks like “if (boolean_expression) goto some_label;”.

• Insert a copy of “do {” right after where some_label is declared.

• Replace ‘if’ by ‘} while’.

• Remove ‘goto some_label’.

For example, the following code

int main() {
int score;
get_score:
scanf("%d",&score);
if (score < 0 || score > 100) goto get_score;
if (score < 60) goto fail;
fail:
puts("you are failed!");
return 0;

}

will be modified into

int main() {
int score;

get_score: do {
scanf("%d",&score);
} while (score < 0 || score > 100) ;
} while (score < 60) ;
fail: do {
puts("you are failed!");
return 0;

}

2016 Taiwan Online Programming Contest

It is not too surprising that the code above cannot be compiled. Here is your new task: given a
sequences of statements, please determine whether all if-goto statements can be replaced by
do-while loops without changing the output of your code. For simplicity, you may assume all
statements are either in the following two forms.

• Form 1: “line_x: puts("x");” where x is corresponding line number of this statement
and “puts("x");” prints the line number x.

• Form 2: “if (expr_x()) goto line_y;” where x is the corresponding line number of
this statement and line_y is a valid label in the program. “expr_x()” will return true
on first x invocations, and it will return false afterward.

Note that the output of the program should be considered as different from the original output
if the modification makes the code unable to be compiled.

Input Format
In the first line of input, there will be a single integer T (T ≤ 20) on a line representing the
number of test cases.

Each test case is consists of a sequence of statements. Each statements will be on a single line,
which starts on line 1. There can be three kinds of lines: statements in form 1, statements in
form 2, and “END”. “END” will indicate the end of a test case. It can only be the last line of a
test case, and it should not be considered as a part of the program. There are at most 10000
statements in a single test case (END’s are excluded).

Output Format
Print “good” on a single line if replacing all if-goto statements with do-while will not change
the output of the program. Otherwise print “bad”. Note: you should output “bad” if the
program becomes no longer compilable.

Sample Input
3
line_1: puts("1");
if (expr_2()) goto line_1;
END
line_1: puts("1");
line_2: puts("2");
line_3: puts("3");
if (expr_4()) goto line_2;
line_5: puts("5");
if (expr_6()) goto line_2;
END
line_1: puts("1");
if (expr_2()) goto line_5;
line_3: puts("3");
line_4: puts("4");
line_5: puts("5");
END

Sample Output
good
good
bad

