Problem H
 Richard Hamming

Time limit: 1 second
Memory limit: 256 megabytes

Problem Description

The Hamming distance $d_{H}(\vec{v}, \vec{u})$ between two n-dimensional vectors $\vec{v}=\left(v_{1}, \ldots, v_{n}\right)$ and $\vec{u}=$ $\left(u_{1}, \ldots, u_{n}\right)$ is defined as $d_{H}(\vec{v}, \vec{u})=\mid\left\{i: v_{i} \neq u_{i}\right.$ and $\left.i \in\{1, \ldots, n\}\right\} \mid$, i.e., the number of positions at which the corresponding entries are different. For example, the Hamming distance between $(1,2,3,4,5)$ and $(1,0,0,4,5)$ is 2 , since these two vectors differ only at the second and the third positions. Please write a program to compute the Hamming distance between two n-dimensional vectors.

Input Format

On the first line there is a single integer $T(T \leq 100)$ indicating the number of test cases. Each test case consists of three lines. The first line of each test case contains an integer $n(0<n \leq 50)$ indicating the dimension of the vectors. The second line contains n integers v_{1}, \ldots, v_{n}, and the third line contains n integers u_{1}, \ldots, u_{n}. You may assume that $v_{1}, \ldots, v_{n}, u_{1}, \ldots, u_{n} \in$ $\{0,1, \ldots, 99\}$.

Output Format

For each test case, output the Hamming distance between $\left(v_{1}, \ldots, v_{n}\right)$ and $\left(u_{1}, \ldots, u_{n}\right)$.

Sample Input

2

3
123
321
4
1010
1011

Sample Output

2

1

Postscript

Richard Hamming won the Turing award in 1968 for his contribution on numerical methods, error detecting codes, and error correcting codes.

