$C - Cactus \ cutting$

Time limit: 15 s Memory limit: 256 MiB

Mr Malnar has given up on his tree obsession and found something even more interesting, cacti! Formally, a cactus is a connected graph where each edge is contained in at most one cycle. A cycle is defined as a sequence of more than one distinct edge in which every two consecutive edges share a common endpoint, and the first and last edge share a common endpoint as well.

Unfortunately, the cactus that Mr Malnar bought is rather big, so he would like to cut it up into disjoint sticks. One stick is defined as a pair of edges that share a common endpoint. Mr Malnar is a pedantic individual, so he wants to know the exact number of ways he can cut up his cactus into sticks.

Input data

The first line contains the number of vertices N and the number of edges M. This is followed by M lines, each containing two distinct integers A_i and B_i denoting an edge between vertices A_i and B_i . Each edge will be listed exactly once.

Input limits

- $1 \le N, M \le 100\,000$
- $1 \le A_i, B_i \le N$

Output data

Compute the number of distinct ways Mr Malnar can cut his cactus up into sticks. Since this number can get quite large, output the result modulo $10^6 + 3$.

Example

Input	Output
10 12	8
1 6	
2 5	
7 2	
8 9	
8 1	
2 6	
4 3	
4 10	
3 10	
3 9	
1 3	
5 7	

Page 8 of 26