G - Lines in a grid

Time limit: $8 \mathrm{~s} \quad$ Memory limit: 1024 MiB
Suppose that we are given a $n \times n$ integer grid, e.g. $\{(i, j)\}_{i=0, j=0}^{n-1, n-1}$. Let l_{n} be the number of different lines that intersect with at least two points on the grid.

For $n=3$, there are exactly 20 such lines, as drawn on the image below.

Compute l_{n} for all given n.

Input data

First line contains an integer Q - the number of queries. The second line contains Q space-separated integers n_{1}, \ldots, n_{Q}.

Input limits

- $1 \leq Q \leq 1000$
- $1 \leq n_{i} \leq 10^{7}$

Output data

Print Q numbers $l_{n_{1}}, \ldots, l_{n_{N}}$, each in its own line. Since l_{k} can be large, print them modulo $10^{6}+3$.

Example

Input
3
132

0
20
6

