G – Lines in a grid

Time limit: 8 s Memory limit: 1024 MiB

Suppose that we are given a $n \times n$ integer grid, e.g. $\{(i, j)\}_{i=0, j=0}^{n-1, n-1}$. Let l_n be the number of different lines that intersect with at least two points on the grid.

For n = 3, there are exactly 20 such lines, as drawn on the image below.

Compute l_n for all given n.

Input data

First line contains an integer Q – the number of queries. The second line contains Q space-separated integers n_1, \ldots, n_Q .

Input limits

- $1 \le Q \le 1000$
- $1 \le n_i \le 10^7$

Output data

Print Q numbers l_{n_1}, \ldots, l_{n_N} , each in its own line. Since l_k can be large, print them modulo $10^6 + 3$.

Example

Input	Output
3	0
1 3 2	20
	6