蔬菜 (vegetables)

【题目描述】

小 N 是蔬菜仓库的管理员,负责设计蔬菜的销售方案。

在蔬菜仓库中,共存放有 n 种蔬菜,小 N 需要根据不同蔬菜的特性,综合考虑各方面因素,设计合理的销售方案,以获得最多的收益。

在计算销售蔬菜的收益时,每销售一个单位第i种蔬菜,就可以获得 a_i 的收益。

特别地,由于政策鼓励商家进行多样化销售,第一次销售第i种蔬菜时,还会额外得到 s_i 的额外收益。

在经营开始时,第i种蔬菜的库存为 c_i 个单位。

然而,蔬菜的保鲜时间非常有限,一旦变质就不能进行销售,不过聪明的小 N 已经计算出了每个单位蔬菜变质的时间:对于第 i 种蔬菜,存在保鲜值 x_i ,每天结束时会有 x_i 个单位的蔬菜变质,直到所有蔬菜都变质。(注意:每一单位蔬菜的变质时间是固定的,不随销售发生变化)

形式化地:对于所有的满足条件 $d \times x_i \le c_i$ 的正整数 d,有 x_i 个单位的蔬菜将在第 d 天结束时变质。

特别地,若 $(d-1) \times x_i \le c_i < d \times x_i$,则有 $c_i - (d-1) \times x_i$ 单位的蔬菜将在第 d 天结束时变质。

注意, 当 $x_i = 0$ 时, 意味着这种蔬菜不会变质。

同时,每天销售的蔬菜**总量**也是有限的,最多不能超过 m 个单位。

现在,小 N 有 k 个问题,想请你帮忙算一算。每个问题的形式都是:对于已知的 p_j ,如果需要销售 p_j 天,最多能获得多少收益?

【输入格式】

从文件 vegetables.in 中读入数据。

第一行包含三个正整数 n, m, k,分别表示蔬菜的种类数目、每天能售出蔬菜总量上限、小 N 提出的问题的个数。

接下来 n 行,每行输入四个非负整数,描述一种蔬菜的特点,依次为 a_i , s_i , c_i , x_i ,意义如上文所述。

接下来 k 行,每行输入一个非负整数 p_i ,意义如上文所述。

【输出格式】

输出到文件 vegetables.out 中。

输出 k 行,每行包含一个整数,第 i 行的数表示第 i 个问题的答案。

【样例1输入】

2 3 2

3 3 3 3

2 5 8 3

1

3

【样例1输出】

16

27

【样例 2】

见选手目录下的 *vegetables/vegetables2.in* 与 *vegetables/vegetables2.ans*。

【样例 3】

见选手目录下的 vegetables/vegetables3.in 与 vegetables/vegetables3.ans。

【样例1解释】

共有两种蔬菜:

销售第1种蔬菜时,每销售一单位可以获得的收益为3,第一次销售这种蔬菜时,额外可以获得的收益为3。这种蔬菜共有3个单位,均会在第一天结束时变质。

销售第2种蔬菜时,每销售一单位可以获得的收益为2,第一次销售这种蔬菜时,额外可以获得的收益为5。这种蔬菜共有8个单位,其中,有3单位在第一天结束时变质,3单位在第二天结束时变质,2单位在第三天结束时变质。

在只销售1天时,应当销售2单位的第一种蔬菜和1单位的第二种蔬菜。

在这种情况下: 销售第一种蔬菜的收益为 $2 \times 3 + 3$; 销售第二种蔬菜的收益为 $1 \times 2 + 5$; 总共获得的收益为 $(2 \times 3 + 3) + (1 \times 2 + 5) = 16$ 。

在只销售3天时,第一天应当销售3单位的第一种蔬菜,第二天应当销售3单位的第二种蔬菜(此时选择在第二天结束时会变质的3个单位出售),第三天销售2单位的第二种蔬菜。

在这种情况下: 销售第一种蔬菜的收益为 $3 \times 3 + 3$; 销售第二种蔬菜的收益为 $(3+2) \times 2 + 5$; 总共获得的收益为 $(3 \times 3 + 3) + [(3+2) \times 2 + 5] = 27$ 。

【子任务】

测试点编号	n	m	p_j	特性 1	特性 2
1	≤ 2	≤ 10		无	无
2	≤ 3		$\leq 10^{3}$		
3	≤ 4				
4	$\leq 10^3$		≤ 2		
5			≤ 3		
6			≤ 4		
7	≤ 4	≤ 1	2 4		
8	≤ 6	≤ 2	≤ 6		
9	≤ 8	≤ 1	≤ 8		
10	≤ 10	≤ 2	≤ 10		
11	≤ 20	≤ 3	≤ 20		
12	$\leq 10^2$	≤ 10	$\leq 10^2$	有	无
13				无	有
14					无
15					<i>/</i> L
16	$\leq 10^3$		≤ 10 ³	有	有
17					无
18				无	有
19					
20					<i>/</i> L
21	$\leq 10^5$		≤ 10 ⁵	有	有
22					无
23				无	有
24					无
25					/L

特性 1: 所有的 s_i 均为 0。

特性 2: 所有的 x_i 均为 0。

对于所有的测试数据,均保证 k 组询问中的 p_j 互不相同。

对于所有的测试数据,均保证 $0 < a_i, c_i \le 10^9$, $0 \le s_i, x_i \le 10^9$ 。