I Antennas

Time limit: 4.0 s
Memory limit: 2048MB

There are n equidistant antennas on a line, numbered from 1 to n. Each antenna has a power rating, the power of the i-th antenna is p_{i}.

The i-th and the j-th antenna can communicate directly if and only if their distance is at most the minimum of their powers, i.e., $|i-j| \leq \min \left(p_{i}, p_{j}\right)$. Sending a message directly between two such antennas takes 1 second.

What is the minimum amount of time necessary to send a message from antenna a to antenna b, possibly using other antennas as relays?

INPUT

Each test contains multiple test cases. The first line contains an integer $t(1 \leq t \leq 100000)$ - the number of test cases. The descriptions of the t test cases follow.
The first line of each test case contains three integers $n, a, b(1 \leq a, b \leq n \leq 200000)$ - the number of antennas, and the origin and target antenna.
The second line contains n integers $p_{1}, p_{2}, \ldots, p_{n}\left(1 \leq p_{i} \leq n\right)$ - the powers of the antennas.
The sum of the values of n over all test cases does not exceed 200000 .

Output

For each test case, print the number of seconds needed to trasmit a message from a to b. It can be shown that under the problem constraints, it is always possible to send such a message.

SAMPLES

Sample input 1	Sample output 1
3	4
1029	0
$\begin{array}{lllllllllll}4 & 1 & 1 & 1 & 5 & 1 & 1 & 1 & 1 & 5\end{array}$	2
111	
1	
$\begin{array}{llll}3 & 1 & 3\end{array}$	
331	

Explanation of sample 1.

In the first test case, we must send a message from antenna 2 to antenna 9 . A sequence of communications requiring 4 seconds, which is the minimum possible amount of time, is the following:

- In 1 second we send the message from antenna 2 to antenna 1 . This is possible since $|2-1| \leq$ $\min (1,4)=\min \left(p_{2}, p_{1}\right)$.
- In 1 second we send the message from antenna 1 to antenna 5 . This is possible since $|1-5| \leq$ $\min (4,5)=\min \left(p_{1}, p_{5}\right)$.
- In 1 second we send the message from antenna 5 to antenna 10 . This is possible since $|5-10| \leq$ $\min (5,5)=\min \left(p_{5}, p_{10}\right)$.
- In 1 second we send the message from antenna 10 to antenna 9 . This is possible since $|10-9| \leq$ $\min (5,1)=\min \left(p_{10}, p_{9}\right)$.

