J Boundary

Time limit: 2.0 S
Memory limit: 2048MB

Bethany would like to tile her bathroom. The bathroom has width w centimeters and length l centimeters. If Bethany simply used the basic tiles of size 1×1 centimeters, she would use $w \cdot l$ of them.

However, she has something different in mind.

- On the interior of the floor she wants to use the 1×1 tiles. She needs exactly $(w-2) \cdot(l-2)$ of these.
- On the floor boundary she wants to use tiles of size $1 \times a$ for some positive integer a. The tiles can also be rotated by 90 degrees.

For which values of a can Bethany tile the bathroom floor as described? Note that a can also be 1 .

InPUT

Each test contains multiple test cases. The first line contains an integer $t(1 \leq t \leq 100)$ - the number of test cases. The descriptions of the t test cases follow.
Each test case consist of a single line, which contains two integers $w, l\left(3 \leq w, l \leq 10^{9}\right)$ - the dimensions of the bathroom.

Output

For each test case, print an integer $k(0 \leq k)$ - the number of valid values of a for the given test case - followed by k integers $a_{1}, a_{2}, \ldots, a_{k}\left(1 \leq a_{i}\right)$ - the valid values of a. The values $a_{1}, a_{2}, \ldots, a_{k}$ have to be sorted from smallest to largest.

It is guaranteed that under the problem constraints, the output contains at most 200000 integers.

SAMPLES

\left.| Sample input 1 | | | | Sample output 1 | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 3 | | 3 | 1 | 2 | 3 |
| 3 | 1 | 2 | 11 | | |
| 3 | 5 | 12 | | 2 | 2 |$\right]$

Explanation of sample 1.

In the first test case, the bathroom is 3 centimeters wide and 5 centimeters long. There are three values of a such that Bethany can tile the floor as described in the statement, namely $a=1, a=2$ and $a=3$. The three tilings are represented in the following pictures.

$$
a=1
$$

$a=2$
$a=3$

