
18 Problem I: Incomplete Implementation

I Incomplete Implementation Time limit: 2s

Merge sort is a sorting algorithm. It works by splitting an array in half, sorting both halves
recursively and then merging those halves together to sort the entire array. Your friend is
working on an implementation of the merge sort algorithm, but unfortunately he is not quite
there yet: he can only sort half of the array! In great despair he turns to you for help: can
you use his unfinished code to write an algorithm that sorts an array completely?

In its current state, your friend’s code is a sorting function that can be run on arbitrary
subarrays, as long as it is precisely half as long as the original array. It then correctly sorts
this subarray. Note that a subarray does not have to be contiguous, it can be any subset of
the original array!

You decide to play around with this function. You start with a jumbled array and try to
sort it (see Figure I.1). After choosing 3 subarrays and using them as input for the sorting
function, you end up with a sorted array. Interestingly, it seems that no matter what the
original array is, you can always sort it completely by invoking your friend’s sorting function
only 3 times. You decide that this makes for a good challenge: you want to extend the code
to work for a full array, making at most three calls to the sorting function.

Now you need to figure out which subarrays to sort! Given an array of length n, output at
most three subarrays of length 1

2n so that sorting these subarrays in order will result in a
sorted array. It is guaranteed that this is always possible.

3 8 4 7 1 5 2 6 =⇒ 3 4 5 7 1 6 2 8
↓ ↑

8 4 5 6 −→ 4 5 6 8

Figure I.1: First sorting step of Sample output 1

Input

The input consists of:

• One line containing a single integer n (4 ≤ n ≤ 105) divisible by 4, the length of the
array.

• One line containing n unique integers ai (1 ≤ ai ≤ n), the array to be sorted.

Output

The output consists of:

• One line containing the number of function calls f (0 ≤ f ≤ 3).



Problem I: Incomplete Implementation 19

• f lines, each containing 1
2n unique integers bi (1 ≤ bi ≤ n), the indices determining the

subarray to be sorted at each of the function calls.

If there are multiple valid solutions, you may output any one of them. You do not have to
minimize f .

Sample Input 1 Sample Output 1
8
3 8 4 7 1 5 2 6

3
2 3 6 8
1 3 4 5
2 4 5 7

Sample Input 2 Sample Output 2
4
1 4 3 2

3
3 4
2 3
3 4

Sample Input 3 Sample Output 3
8
1 4 8 7 5 6 3 2

2
6 5 3 8
4 3 7 2


