Problem E. Elegance in moves

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

Given a board of size $n \times m$ cells, you have to find the number of different pairs of cells between which the chess queen can walk in a single move and without crossing any of the given rectangles. Additionally, it is known that each cell belongs to no more than one rectangle. Recall that in a single move the queen can move any number of squares in a straight line - vertically, horizontally or diagonally.
Since the answer can be large, print it modulo $10^{9}+7$.

Input

The first line contains three integers $n m k$ - field size and the number of rectangles, respectively. The next k lines contain four integers $r 1_{i} c 1_{i} r 2_{i} c 2_{i}$ - the coordinates of the i-th rectangle. No two different rectangles share a common cell.

$$
\begin{gathered}
1 \leq n, m \leq 10^{9} \\
0 \leq k \leq 10^{5} \\
1 \leq r 1_{i} \leq r 2_{i} \leq n \\
1 \leq c 1_{i} \leq c 2_{i} \leq m
\end{gathered}
$$

Output

Print a single integer, denoting the number of pairs of cells between which the chess queen can walk in a single move outside of the rectangles modulo $10^{9}+7$.

Examples

		standard input	
1	6	1	4
1	3	1	3

