Problem I. Items in boxes

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

You have 2^n different boxes, each of them containing *a* different items. Find the number of ways to take exactly one item from each box modulo 2^{n+2} .

In other words, if the required number of ways is x, print the remainder of dividing x by 2^{n+2} .

Input

The only line of the input data contains two integers separated by a space n and a.

 $1 \le a,n \le 10^9$

Output

Print a single number — the remainder of dividing the number of ways to choose one item from each box by 2^{n+2} .

Examples

standard input	standard output
5 10	0
10 5	1
1 2	4

Note

In the third example, $2^n = 2$ boxes, each with a = 2 items. It turns out that there are two ways to take an item from the first and two ways to take an item from the second, total $2 \cdot 2 = 4$ of the method. The remainder of the division by $2^{n+2} = 2^3 = 8$ is 4.