Problem I. Items in boxes

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

You have 2^{n} different boxes, each of them containing a different items. Find the number of ways to take exactly one item from each box modulo 2^{n+2}.
In other words, if the required number of ways is x, print the remainder of dividing x by 2^{n+2}.

Input

The only line of the input data contains two integers separated by a space n and a.

$$
1 \leq a, n \leq 10^{9}
$$

Output

Print a single number - the remainder of dividing the number of ways to choose one item from each box by 2^{n+2}.

Examples

standard input	standard output
510	0
105	1
12	4

Note

In the third example, $2^{n}=2$ boxes, each with $a=2$ items. It turns out that there are two ways to take an item from the first and two ways to take an item from the second, total $2 \cdot 2=4$ of the method. The remainder of the division by $2^{n+2}=2^{3}=8$ is 4 .

