Problem K. K-ones xor

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 megabytes

You are given integers n, m and an array $a_{1}, a_{2}, \ldots, a_{n}$ of length n consisting of m-bit integers. You are also given an integer k. You need to find m-bit integer x, which has no more than k ones in binary representation. Out of all this numbers, you need to find such number, that after applying $a_{i}=\max \left(a_{i}, a_{i} \oplus x\right)$ to the array, sum of the array will be maximal. \oplus denotes the operation of bitwise $X O R$. If there are multiple such numbers, you need to find the minimal one.

Input

The first line of input file contains three integers n, m, k. The second line of input file contains the array $a_{1}, a_{2}, \ldots, a_{n}$.

$$
\begin{gathered}
1 \leq n \leq 10^{5} \\
1 \leq m \leq 30 \\
0 \leq k \leq m \\
0 \leq a_{i}<2^{m}
\end{gathered}
$$

Output

Output single number x - answer for the task.

$$
0 \leq x<2^{m}
$$

Examples

	standard input		standard output	
3	2	2	1	
3	2	2		1
2	1	1		
0	0			

