Problem A. One-time passwords

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 megabytes

Nowadays two-factor authentication, when user is required to use primary password and one or more one-time passwords, is becoming more widespread. Consider one of possible ways to generate such kind of passwords.

Let $F(Q)$ be a number of positive integers not greater than Q, which can be represented as $2^{x}-2^{y}$ when x, y are non-negative integer numbers. Consider all possible numbers Q such as $F(Q)=N$ and sort them in ascending order by number of one-bits in their binary representation. If two numbers have the same number of one-bits in binary representation, they should be compared by their values. Proposed algorithm chooses K-th number in this sorted sequence.
You are required to find one-time passwords for T authentication sessions.

Input

First line contains an integer number T - number of authentication sessions. Next T lines contain two numbers N_{i} and K_{i} each - parameters of one-time password generation algorithms.

$$
\begin{gathered}
1 \leq T \leq 10^{5} \\
1 \leq N_{i}, K_{i} \leq 10^{18}
\end{gathered}
$$

Output

T lines containing one integer number each - one-time password for corresponding authentication session. Each password should be computed in modulo $10^{9}+7$. If it is impossible to generate one time password, -1 should be printed.

Example

standard input	standard output
1	42
16	10

