Doomsday

Problem ID: doomsday

Doomsday is near! Or at least that's what your brother is telling you. In his preparations he has constructed a clever network of well concealed food depots and water depots far out in a mountainous region. You are in your base, and the alarm goes off: how quickly can you fetch both food and water supplies?

Input

The first line contains four integers n, m, w, f, where $1 \leq n \leq 50000$ is the number of hidden locations, $0 \leq m \leq 150000$ is the number of trails in the network, $1 \leq w \leq n$ is the number of water depots in total, and $1 \leq f \leq n$
 is the number of food depots in total. Your base is at location 0 . The second line contains w space-separated integers $u_{1}, u_{2}, \ldots, u_{w}$, which represents the (distinct) locations of the water depots $\left(0 \leq u_{i}<n\right.$ for each i). The third line contains f space-separated integers $v_{1}, v_{2}, \ldots, v_{f}$, which represents the (distinct) locations of the food depots ($0 \leq v_{i}<n$ for each i).

The next m lines each describe a (bidirectional) trail in the network. The $i^{\text {th }}$ such line contains three spaceseparated integers a_{i}, b_{i} and t_{i} indicating that there is a trail between location a_{i} and b_{i} which takes t_{i} hours to traverse ($0 \leq a_{i}, b_{i}<n$ and $0 \leq t_{i}<100$ for each i).

Output

Output a single integer, the minimum number of hours required to fetch both food and water and bring it back to base.

Sample Input 1
7 7 2 2 3 6 14 4 5 0 1 3 0 2 1 1 3 3 1 4 1 2 5 2 2 6 10 4 5 1

