Doomsday Problem ID: doomsday

Doomsday is near! Or at least that's what your brother is telling you. In his preparations he has constructed a clever network of well concealed food depots and water depots far out in a mountainous region. You are in your base, and the alarm goes off: how quickly can you fetch both food and water supplies?

Input

The first line contains four integers n, m, w, f, where $1 \le n \le 50\,000$ is the number of hidden locations, $0 \le m \le 150\,000$ is the number of trails in the network, $1 \le w \le n$ is the number of water depots in total, and $1 \le f \le n$ is the number of food depots in total. Your base is at location 0. The second line contains w space-separated integers u_1, u_2, \ldots, u_w , which represents the (distinct) locations of the water depots ($0 \le u_i < n$ for each i). The third

Nountain Trail by Coconino NF Photograph via Flick

line contains f space-separated integers v_1, v_2, \ldots, v_f , which represents the (distinct) locations of the food depots $(0 \le v_i < n \text{ for each } i)$.

The next m lines each describe a (bidirectional) trail in the network. The i^{th} such line contains three spaceseparated integers a_i , b_i and t_i indicating that there is a trail between location a_i and b_i which takes t_i hours to traverse ($0 \le a_i$, $b_i < n$ and $0 \le t_i < 100$ for each i).

Output

Output a single integer, the minimum number of hours required to fetch both food and water and bring it back to base.

Sample Input 1	Sample Output 1
7722	14
3 6	
4 5	
0 1 3	
021	
1 3 3	
1 4 1	
2 5 2	
2 6 10	
4 5 1	