Problem E. Nice Shape

Time limit: 4 seconds

You are given n rooks on the different cells of the infinite chessboard.
The i-th of them is in the cell $\left(r_{i}, c_{i}\right)$.
In one move you can move any rook to any cell in the same row/column. In other words, in one move you can choose any i and then either replace r_{i} to any other integer or replace c_{i} to any other integer. You can't move a rook to the cell with some other rook.
Four different rooks a, b, c, d form a nice shape if you can find a rectangle such that a, b, c, d are its corners. In other words, if the set of cells $\left\{\left(r_{a}, c_{a}\right),\left(r_{b}, c_{b}\right),\left(r_{c}, c_{c}\right),\left(r_{d}, c_{d}\right)\right\}$ is equal to the set of cells $\left\{\left(x_{1}, y_{1}\right),\left(x_{1}, y_{2}\right),\left(x_{2}, y_{1}\right),\left(x_{2}, y_{2}\right)\right\}$ for some integers $x_{1}, x_{2}, y_{1}, y_{2}$ with $x_{1} \neq x_{2}$ and $y_{1} \neq y_{2}$.
For example, the white rooks in the following picture form a nice shape.

Your goal is to find the minimum number of moves that you can perform to get a nice shape.
In other words, you need to find the minimum number of moves that you can perform, such that after them it will be possible to find a rectangle with four rooks in its corners.

Input

The first line of input contains one integer $t(1 \leq t \leq 25000)$: the number of test cases.
The description of t test cases follows.
The first line contains one integer $n(4 \leq n \leq 100000)$.
The i-th of the next n lines contains two integers $r_{i}, c_{i}\left(1 \leq r_{i}, c_{i} \leq 10^{9}\right)$
For each pair i, j with $i \neq j, r_{i} \neq r_{j}$ or $c_{i} \neq c_{j}$.
The total sum of n is at most 100000 .

Output

For each test case, print one integer: the minimum number of moves you need to perform to obtain at least one nice shape among given rooks.

Scoring

Subtask	Score	Constraints
1	10	$n \leq 4$
2	10	$n \leq 50$
3	10	$n \leq 200$
4	30	$n \leq 2000$
5	40	$n \leq 10^{5}$

Innopolis Open

Example

standard input	standard output
5 4 44 11 22 33 4 44 41 14 22 6 32 21 12 33 34 31 5 11 12 13 14 55 4 10000000001000000000 10000000001 22 1000000000999999999	$\begin{aligned} & \hline 4 \\ & 2 \\ & 1 \\ & 3 \\ & 3 \end{aligned}$

Note

One of the possible optimal solutions for the first test case of the example:

One of the possible optimal solutions for the second test case of the example:

