Problem C. Race

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	256 mebibytes

Pigetown is a city with n crossings and m bidirectional roads. A huge race event is going to be held in Pigetown. There are k types of race tracks, and each road in the city can be viewed as a particular type of race track.
In the race, each participant should choose an integer i such that $1 \leq i \leq q$, start at crossing S_{i}, visit each type of race tracks the same number of times, and finally arrive at crossing T_{i} in order to finish the race.
Grammy wants to know if it is possible to finish the race when choosing each integer i. Write a program to help her solve the problem.

Input

The first line contains 4 integers $n, m, k, q(1 \leq n, m, q \leq 200000,1 \leq k \leq 30)$, indicating the number of crossings, the number of roads, the number of race track types, the upper limit of chosen integer i, respectively.
In the next m lines, each line contains 3 integers $u, v, t(1 \leq u, v \leq n, 1 \leq t \leq k)$, indicating that there is a bidirectional road between crossing u and crossing v with type t.
In the next q lines, each line contains 2 integers $S_{i}, T_{i}\left(1 \leq S_{i}, T_{i} \leq n\right)$, indicating one possible combination of starting point and ending point.

Output

Output q lines.
In the i-th line, if it is possible to finish the race while choosing integer i, output "Yes", otherwise output "No"(Without quotes).

Example

			standard input		standard output
7	9	3	4	Yes	
1	2	1		No	
2	3	1		Yes	
3	1	2			
1	4	3			
5	6	2			
6	7	1			
6	7	3			
7	7	2			
5	5	1			
6	7				
1	4				
2	4				
2	5				

