Problem E. The Profiteer

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 mebibytes

BaoBao has a store. There are n items in the store, labeled by $1,2, \ldots, n$. The value of the i-th item is v_{i}, and the price of it is a_{i} dollars. JB is planning to visit BaoBao's store tomorrow. JB always buys items optimally. Assume JB has t dollars, he will buy a set of items such that the total value is maximized and the total price is no more than t.
The profiteers cheated people right and left. BaoBao knows JB is rich, so he decides to choose a pair of integers l and r, where $1 \leq l \leq r \leq n$, and raises the prices of all the items indexed in $[l, r]$. When JB comes tomorrow, he will need to pay b_{i} dollars instead of a_{i} dollars for the i-th item, where $l \leq i \leq r$.
However, BaoBao doesn't know how rich JB is, he only knows t is an integer uniform randomly chosen in $[1, k]$. BaoBao doesn't want JB to buy so many good items, he is now wondering how many pairs of integers l and r he can choose such that the expected total value of JB's shopping list $\frac{f(1)+f(2)+\cdots+f(k)}{k}$ will not exceed E, where $f(t)$ denotes the total value of the shopping list when JB has t dollars. Please write a program to help BaoBao.

Input

The input contains only a single case.
The first line contains three integers n, k and $E\left(1 \leq n, k \leq 200000, n \times k \leq 10^{7}, 1 \leq E \leq 10^{9}\right)$.
Each of the following n lines contains three integers v_{i}, a_{i} and $b_{i}\left(1 \leq v_{i} \leq 10000,1 \leq a_{i}<b_{i} \leq k\right)$, denoting the value, the initial price and the raised price of the i-th item.

Output

Print a single line containing an integer, denoting the number of valid pairs of integers l and r.

Examples

		standard input		standard output
4	5	3	1	
3	2	4		
1	2	3		
2	1	2		3
3	1	3		
4	5	4		
3	2	4		
1	2	3		
2	1	2		
3	1	3		

