Problem I. Easy Fix

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
3 seconds
512 mebibytes

Since Grammy plays Hollow Knight day and night and forgets the homework Tony gives her, she already has no time to do it. As a talented programmer and good friend of Grammy, you decide to help her. The problem is described as follows.
Given a permutation $p=p_{1}, p_{2}, \ldots, p_{n}$. We define A_{i} as the number of j satisfying that $j<i \wedge p_{j}<p_{i}$, B_{i} as the number of j satisfying that $j>i \wedge p_{j}<p_{i}$, and $C_{i}=\min \left(A_{i}, B_{i}\right)$.
There are m queries. For the i-th query, you should output the value of $\sum_{i=1}^{n} C_{i}$ if we swap p_{u} and p_{v}. Note that we will recover the permutation p after each query which means queries are independent of each other.

Input

The input contains only a single case.
The first line contains one positive integer $n(1 \leq n \leq 100000)$. It is guaranteed that p is a permutation of $1,2, \ldots, n$.
The second line contains n distinct integers $p_{1}, p_{2}, \ldots, p_{n}\left(1 \leq p_{i} \leq n\right)$.
The third line contains one positive integer $m(1 \leq m \leq 200000)$.
The following m lines describe m queries. The i-th line contains two integers u and $v(1 \leq u, v \leq n)$, denoting the parameter of the i-th query. Note that u may be equal to v.

Output

The output contains m lines. Each line contains one integer, denoting the answer to the i-th query.

Examples

standard input	standard output
$\begin{array}{llllllll} \hline 7 & & & & & \\ 1 & 6 & 2 & 7 & 5 & 4 & 3 \\ 7 & & & & & \\ 1 & 7 & & & & & \\ 2 & 6 & & & & \\ 3 & 5 & & & & & \\ 4 & 4 & & & & & \\ 1 & 1 & & & & & \\ 2 & 1 & & & & & \\ 3 & 7 & & & & & \end{array}$	$\begin{aligned} & 7 \\ & 6 \\ & 6 \\ & 7 \\ & 7 \\ & 6 \\ & 8 \end{aligned}$
$\begin{array}{llllll} 5 & & & & \\ 5 & 3 & 1 & 2 & 4 \\ 3 & & & & \\ 3 & 1 & & & \\ 2 & 5 & & & \\ 3 & 3 & & & \end{array}$	$\begin{aligned} & 3 \\ & 0 \\ & 0 \end{aligned}$

