Problem D. Absolute Pairwise Distance

Input file:	standard input
Output file:	standard output
Time limit:	5.5 seconds
Memory limit:	512 mebibytes

John Doe invented a nice way to measure distance between two arrays of different length. Let $a_{1}, \ldots, a_{l_{1}}$ be the first array and $b_{1}, \ldots, b_{l_{2}}$ be the second one. Then $d(a, b)=\sum_{i=1}^{l_{1}} \sum_{j=1}^{l_{2}}\left|a_{i}-b_{j}\right|$. Unfortunately, this distance function does not satisfy the triangle inequality, but John decided to conduct a few experiments anyway.

John has a large array a_{1}, \ldots, a_{n}. For q instances of values $\left(l_{1}, r_{1}, l_{2}, r_{2}\right)$, he would like to know the values $d\left(\left(a_{l_{1}}, a_{l_{1}+1}, \ldots, a_{r_{1}}\right),\left(a_{l_{2}}, a_{l_{2}+1}, \ldots, a_{r_{2}}\right)\right)$. Help him find these values.

Input

The first line contains two integers n and q : the number of elements in the array and the number of queries $\left(1 \leq n, q \leq 10^{5}\right)$. The second line contains n integers a_{1}, \ldots, a_{n} : the elements of John's large array $\left(0 \leq a_{i} \leq 10^{8}\right)$. The next q lines contain four integers each: $l_{1}, r_{1}, l_{2}, r_{2}$, which are the parameters of the respective query ($1 \leq l_{1} \leq r_{1} \leq n, 1 \leq l_{2} \leq r_{2} \leq n$).

Output

For each query, print the value of $d\left(\left(a_{l_{1}}, a_{l_{1}+1}, \ldots, a_{r_{1}}\right),\left(a_{l_{2}}, a_{l_{2}+1}, \ldots, a_{r_{2}}\right)\right)$ on a separate line.

Example

				standard input		standard output
5	5				1	
1	2	3	4	5		3
1	1	2	2		6	
1	1	2	3		4	
1	1	2	4		40	
1	2	2	3			
1	5	1	5			

