Problem I: Index Case

The epidemiologist W. Andy wants to find the index case of an ongoing crisis. To do this, he modelled the city of the outbreak and its n residents with a cellular automaton. The city is represented by n cells numbered from 1 to n and each cell has two neighbouring cells, one to its left and one to its right. The left neighbour of cell i is cell $i-1$ and the right neighbour is cell $i+1$. Additionally, the left neighbour of cell 1 is cell n and the right neighbour of cell n is cell 1 . Thus, the city and the corresponding automaton form a simple cycle.
Each cell contains an integer between 1 and m which represents how likely it is that this person is infected. Since the virus can only be transmitted by personal contact, the value in the i th cell on day d only depends on the values of its neighbours and itself on the previous day. If we denote this value by $s_{d}[i]$, then the outbreak can be simulated by a function f using the formula:

$$
s_{d}[i]=f\left(s_{d-1}[i-1], s_{d-1}[i], s_{d-1}[i+1]\right) .
$$

Note that as the city is cyclic both $i+1$ and $i-1$ are calculated modulo n.
Andy wants to find the index case, so he first has to find s_{0}, the state of the city on day zero. This poses a problem, however, as it is not known on which day the crisis started. Right now, Andy believes that he accomplished the task and found the state s_{0}, but you are not convinced. Therefore, you want to check if there may be a state previous to the initial state proposed by Andy, i.e. whether there exists any state s_{-1} that gets transformed into s_{0} by applying f.

Input

The input consists of:

- One line with two integers n and $m(3 \leq n \leq 200,2 \leq m \leq 10)$, the number of cells and the number of states.
- m^{3} lines describing the values $f(x, y, z)(1 \leq f(x, y, z) \leq m$ for each $1 \leq x, y, z \leq m)$ of the function f modelling the automaton. The values are given in lexicographic order of the arguments: The first value is $f(1,1,1)$, the next is $f(1,1,2)$, and so on until $f(1,1, m)$, followed by $f(1,2,1)$ and so forth. The last value is $f(m, m, m)$.
- One line with n integers $s_{0}[1], \ldots, s_{0}[n]\left(1 \leq s_{0}[i] \leq m\right.$ for each $\left.i\right)$, the initial state that has been proposed by Andy.

Output

Output yes if there exists at least one possible previous state and no otherwise.

Sample Input 1

Sample Output 1

4	2		yes
1			
2			
1			
2			
2			
1			
2			
1			
1	2	1	2

6	2				no
1					
2					
1					
2					
2					
1					
2					
1					
1	2	1	2	1	2

Sample Input 3

