Problem L: Looking for Waldo

You may know the game Where is Waldo?. In this game you need to find a person named Waldo in a crowd of people. This problem is kind of similar. You need to find an axis-aligned rectangle of minimal area which contains the letters $\mathrm{W}, \mathrm{A}, \mathrm{L}, \mathrm{D}$ and O and those letters are hidden in a crowd of other letters.

Figure L.1: Illustration of the second sample case.

Input

The input consists of:

- One line with two integers h and $w\left(1 \leq h, w \leq 10^{5}, h \cdot w \leq 10^{5}\right)$, the height and width of the grid of letters.
- h lines, each with w upper case letters A-Z, the grid of letters.

Output

Output the area of the smallest axis-aligned rectangle which contains at least one of each of the letters $\mathrm{W}, \mathrm{A}, \mathrm{L}, \mathrm{D}$ and O . If there is no rectangle containing those letters, output impossible.

Sample Input 1

Sample Output 1

5 5	25
ABCDE	
FGHIJ	
KLMNO	
PQRST	
VWXYZ	

Sample Input 2
Sample Output 2

5 10	20
ABCDEABCDE	
FGHIJFGHIJ	
KLMNOKLMNO	
PQRSTPQRST	
VWXYZVWXYZ	

Sample Input 3

Sample Output 3

5 10	5
WAALDLODOW	
AWWLAOODOW	
LOLADOWALO	
ADALLLWWOL	

Sample Input 4

Sample Output 4
23
impossible
WAL
TER

