Problem F. Funny Salesman

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

You are given a tree, and each edge has a non-negative integer weight.
Let $d(u, v)$ - The maximum of the edge weights on the unique simple path between vertices u and v. Find the largest $\sum_{i=2}^{n} 2^{d\left(p_{i-1}, p_{i}\right)}$ among all permutations of vertices $p_{1}, p_{2}, \ldots, p_{n}$.

Input

The first line contains one integer $n(2 \leq n \leq 100000)$: the number of vertices in the tree.
Each of the next $n-1$ lines contains three integers $u, v, w(1 \leq u, v \leq n, 0 \leq w \leq 30)$, an edge in the tree with endpoints u, v having weight w.

Output

Print one integer: the largest $\sum_{i=2}^{n} 2^{d\left(p_{i-1}, p_{i}\right)}$.

Examples

	standard input		
5		6	
1	2	0	
2	3	0	
3	4	0	
4	5	1	
10		42	
2	1	1	
3	1	1	
1	4	0	
5	1	2	
6	4	1	
2	7	2	
8	4	2	
8	9	3	
6	10	0	

Note

In the first example, one of the optimal permutations is $\{4,5,3,2,1\}$.

