

Problem F. Funny Salesman

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

You are given a tree, and each edge has a non-negative integer weight.

Let d(u, v) — The maximum of the edge weights on the unique simple path between vertices u and v. Find the largest $\sum_{i=2}^{n} 2^{d(p_{i-1},p_i)}$ among all permutations of vertices p_1, p_2, \ldots, p_n .

Input

The first line contains one integer $n \ (2 \le n \le 100\ 000)$: the number of vertices in the tree.

Each of the next n-1 lines contains three integers u, v, w $(1 \le u, v \le n, 0 \le w \le 30)$, an edge in the tree with endpoints u, v having weight w.

Output

Print one integer: the largest $\sum_{i=2}^{n} 2^{d(p_{i-1},p_i)}$.

Examples

standard input	standard output
5	6
1 2 0	
2 3 0	
3 4 0	
4 5 1	
10	42
2 1 1	
3 1 1	
1 4 0	
5 1 2	
6 4 1	
272	
8 4 2	
8 9 3	
6 10 0	

Note

In the first example, one of the optimal permutations is $\{4, 5, 3, 2, 1\}$.