

Problem G. Graph Coloring

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

You are given a tournament, represented as a complete directed graph (for all pairs i, j of two different vertices, there is exactly one edge among $i \to j$ and $j \to i$), with $n \leq 3000$ vertices. You need to color its edges into 14 colors.

There should be no path $i \to j \to k$ in this graph such that the colors of edges $i \to j$ and $j \to k$ are the same.

It is guaranteed that this is always possible.

Input

The first line of input contains one integer $n \ (3 \le n \le 3000)$: the number of vertices in the given tournament.

Next n-1 lines contain the description of the graph: the *i*-th line contains a binary string with *i* characters.

If the *j*-th character in this string is equal to '1', then the graph has an edge from $(i+1) \rightarrow j$. Otherwise, it has an edge from $j \rightarrow (i+1)$.

Output

The output should contain n-1 lines, where the *i*-th line contains a string with *i* characters.

The *j*-th character in this string should be a lowercase Latin letter between 'a' and 'n'. If the graph has an edge from $(i+1) \rightarrow j$, then this character represents the color of the edge from $(i+1) \rightarrow j$. Otherwise it represents the color of the edge from $j \rightarrow (i+1)$.

There should be no path $i \to j \to k$ in this graph such that the colors of edges $i \to j$ and $j \to k$ are the same.

Examples

standard input	standard output
3	a
1	ab
11	
5	a
1	bc
10	def
100	ghij
0100	