@ mail.ru

Problem G. Graph Coloring

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes

You are given a tournament, represented as a complete directed graph (for all pairs i, j of two different vertices, there is exactly one edge among $i \rightarrow j$ and $j \rightarrow i$), with $n \leq 3000$ vertices. You need to color its edges into 14 colors.
There should be no path $i \rightarrow j \rightarrow k$ in this graph such that the colors of edges $i \rightarrow j$ and $j \rightarrow k$ are the same.

It is guaranteed that this is always possible.

Input

The first line of input contains one integer $n(3 \leq n \leq 3000)$: the number of vertices in the given tournament.
Next $n-1$ lines contain the description of the graph: the i-th line contains a binary string with i characters.
If the j-th character in this string is equal to ' 1 ', then the graph has an edge from $(i+1) \rightarrow j$. Otherwise, it has an edge from $j \rightarrow(i+1)$.

Output

The output should contain $n-1$ lines, where the i-th line contains a string with i characters.
The j-th character in this string should be a lowercase Latin letter between ' a ' and ' n '. If the graph has an edge from $(i+1) \rightarrow j$, then this character represents the color of the edge from $(i+1) \rightarrow j$. Otherwise it represents the color of the edge from $j \rightarrow(i+1)$.
There should be no path $i \rightarrow j \rightarrow k$ in this graph such that the colors of edges $i \rightarrow j$ and $j \rightarrow k$ are the same.

Examples

	standard input
3	a
1	ab
11	
5	standard output
1	bc
10	def
100	ghij
0100	

