Problem I. Insects

Input file:	standard input
Output file:	standard output
Time limit:	5 seconds
Memory limit:	512 mebibytes

You have n black ants in your terrarium, and the i-th black ant lives at coordinate $\left(a_{i}, b_{i}\right)$.
Each day for the next m days, you will buy a new ant for your terrarium. You are only buying white ants, and the i-th white ant that you are buying will live at coordinate $\left(x_{i}, y_{i}\right)$.
Each day, you feed some of your insects. If you feed an insect, the insect will not be hungry in that day. If the i-th white ant is hungry and the j-th black ant is hungry, and $x_{i} \geq a_{j}$ and $y_{i} \geq b_{j}$, they will fight. Find, for each day, the smallest number of ants to feed such that there are no fights.

Input

The first line contains one integer $n(1 \leq n \leq 100000)$: the number of black ants in your terrarium.
Each of the next n lines contains the description of black ants. The i-th of them contain two integers, $a_{i}, b_{i}\left(0 \leq a_{i}, b_{i} \leq 100000\right)$.
The next line contains one integer $m(1 \leq m \leq 100000)$: the number of days in which you are going to buy new white ants.

Each of the next m lines contains the description of white ants in the order you buy them, such that the i-th of them contains two integers, $x_{i}, y_{i}\left(0 \leq x_{i}, y_{i} \leq 100000\right)$.
Note that different ants can live at points with the same coordinates.

Output

Print m integers, such that the i-th of them equals the smallest number of ants that you should feed to avoid fights among the black ants $1,2, \ldots, n$ and the white ants $1,2, \ldots, i$.

Example

$\left.\begin{array}{|ll|ll|}\hline & \text { standard input } & & \text { standard output } \\ \hline 3 & & 1 & \\ 0 & 0 & & 2 \\ 1 & 1 & & 3\end{array}\right]$

