

Problem A. Zero Sum

Input file:	standard input
Output file:	standard output
Time limit:	7 seconds
Memory limit:	256 mebibytes

You are given a matrix a of size $n \times (2k+1)$, which contains integers, rows are numbered from 1 to n, and columns are numbered from -k to k.

You need to choose the sequence of numbers x_1, x_2, \ldots, x_n , such that contraints $(-k \leq x_i \leq k)$ and $(x_1 + x_2 + \ldots + x_n = 0)$ will hold, and, under this, the value of $a_{1,x_1} + a_{2,x_2} + \ldots + a_{n,x_n}$ will be as small as possible.

Input

The first line contains two integers n and k $(1 \le n \le 35\,000, 1 \le k \le 3)$, separated by a space: the dimensions of the matrix a.

The following n lines contain (2k + 1) integers separated by a space: the *j*-th number in the *i*-th of these lines denotes (j - k - 1)-th element of *i*-th row of the matrix $a (-10^9 \le a_{i,j-k-1} \le 10^9)$.

Output

Print one integer: the minimum possible value of the sum $a_{1,x_1} + a_{2,x_2} + \ldots + a_{n,x_n}$ under the constraints $(-k \le x_i \le k)$ and $(x_1 + x_2 + \ldots + x_n = 0)$.

Examples

standard input	standard output
3 1	-19
3 14 15	
-3 -5 -35	
2 71 82	
5 2	16
1 2 5 14 42	
1 2 3 5 8	
1 2 4 8 16	
1 2 3 4 5	
1 2 6 24 120	

Note

In the first sample optimal solution is to choose sequence 0, 1, -1, which will give the required answer, which equals 15 + (-35) + 2 = -19.