

Problem C. Tree Circles

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You have a tree on n vertices, edges are numbered by distinct integers from 1 to n-1.

Let's call a circle from v with radius r a set of vertices in the connected component of v if you will leave only edges with numbers $\leq r$.

You need to answer several queries on the given tree.

In each query you are given k and k vertices v_1, v_2, \ldots, v_k .

You need to find the number of ways to pick a radius for each given vertex, such that all circles won't intersect.

In other words, you need to calculate the number of tuples (r_1, r_2, \ldots, r_k) $(0 \le r_1, r_2, \ldots, r_k \le n-1)$ such that $circle(v_i, r_i) \cap circle(v_j, r_j) = \emptyset$ for $i \ne j$.

As the number may very big, you only need to find it modulo 998 244 353.

Input

The first line of input contains one integer n ($2 \le n \le 300\,000$): the number of vertices in the given tree.

Next (n-1) lines contain the description of edges, each line contain two integers $u_i, v_i \ (1 \le u_i, v_i \le n; u_i \ne v_i)$ describing edge connecting vertices u_i and v_i with number *i* in the tree.

It is guaranteed that the given graph is a tree.

The next line of input contains one integer q $(1 \le q \le n)$: the number of queries.

Next q lines contain the description of edges, each line contain one integer k $(1 \le k \le n)$, and k distinct integers after, v_1, v_2, \ldots, v_k $(1 \le v_i \le n)$: the current query.

It is guaranteed that the sum of k is at most 300 000.

Output

For each query output one integer: the number of tuples (r_1, r_2, \ldots, r_k) $(0 \le r_1, r_2, \ldots, r_k \le n-1)$ such that $circle(v_i, r_i) \cap circle(v_j, r_j) = \emptyset$ for $i \ne j$, modulo 998 244 353.

Example

standard input	standard output
3	2
1 2	4
2 3	
2	
3 1 2 3	
2 1 3	