Problem F. Good Coloring

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You have an undirected graph, each vertex is colored in one of k possible colors, the graph is properly colored into k colors, i.e two ends of any edge are colored in different colors.
Your goal is to find another (or maybe the same) coloring of this graph into x colors, such that $x \leq k$, and there exists a path of length x, which contains all possible colors.
It is guaranteed that it is always possible.

Input

The first line of input contains one integer $t(1 \leq t \leq 600000)$: the number of test cases.
The first line of each test case contains three integers n, m and k : the number of vertices, edges, and the number of colors you are using of the graph $(1 \leq n \leq 300000 ; 0 \leq m \leq 300000 ; 1 \leq k \leq n)$.

The next line contains n space-separated integers $c_{1}, c_{2}, \ldots, c_{n}\left(1 \leq c_{i} \leq k\right)$: colors of vertices.
It is guaranteed that the given coloring is correct.
Each of the next m lines contains two integers, u and $v(1 \leq u, v \leq n ; u \neq v)$: indices of vertices connected by edge. It is guaranteed that in each test case there are no multiple edges in the graph.
It is guaranteed that the sum of $n+m$ is at most 600000 .

Output

For each test case output $n+1$ integers, $x(1 \leq x \leq k)$, $p_{1}, p_{2}, \ldots, p_{n}\left(1 \leq p_{i} \leq x\right)$: new coloring.
This coloring should be proper, i.e two ends of any edge are colored in different colors.
Also for each test case in next line print x integers $v_{1}, v_{2}, \ldots, v_{x}\left(1 \leq v_{i} \leq n\right)$, there should exists an edge between vertices v_{i} and v_{i+1}, and all colors of vertices should be different, so $p_{v_{i}} \neq p_{v_{j}}$ for all pairs $1 \leq i<j \leq x$.

Example

standard input	standard output
2	3321
333	123
123	2211
12	12
23	
31	
313	
123	
12	

