

Problem F. Good Coloring

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You have an undirected graph, each vertex is colored in one of k possible colors, the graph is properly colored into k colors, i.e two ends of any edge are colored in different colors.

Your goal is to find another (or maybe the same) coloring of this graph into x colors, such that $x \leq k$, and there exists a path of length x, which contains all possible colors.

It is guaranteed that it is always possible.

Input

The first line of input contains one integer t $(1 \le t \le 600\,000)$: the number of test cases.

The first line of each test case contains three integers n, m and k: the number of vertices, edges, and the number of colors you are using of the graph $(1 \le n \le 300\,000; 0 \le m \le 300\,000; 1 \le k \le n)$.

The next line contains n space-separated integers c_1, c_2, \ldots, c_n $(1 \le c_i \le k)$: colors of vertices.

It is guaranteed that the given coloring is correct.

Each of the next m lines contains two integers, u and v $(1 \le u, v \le n; u \ne v)$: indices of vertices connected by edge.

It is guaranteed that in each test case there are no multiple edges in the graph.

It is guaranteed that the sum of n + m is at most 600 000.

Output

For each test case output n + 1 integers, $x \ (1 \le x \le k), \ p_1, p_2, \dots, p_n \ (1 \le p_i \le x)$: new coloring.

This coloring should be proper, i.e two ends of any edge are colored in different colors.

Also for each test case in next line print x integers v_1, v_2, \ldots, v_x $(1 \le v_i \le n)$, there should exists an edge between vertices v_i and v_{i+1} , and all colors of vertices should be different, so $p_{v_i} \ne p_{v_j}$ for all pairs $1 \le i < j \le x$.

Example

standard input	standard output
2	3 3 2 1
3 3 3	1 2 3
1 2 3	2 2 1 1
1 2	1 2
2 3	
3 1	
3 1 3	
1 2 3	
1 2	