Problem G. Circle Convertation

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
256 mebibytes

You have two strings of zeroes and ones, $s_{0}, s_{1}, \ldots, s_{n-1}$ and $t_{0}, t_{0}, \ldots, t_{n-1}$.
In one operation you can choose i, such that $s_{i}=s_{(i+1)} \bmod n$, and invert s_{i} and $s_{(i+1)} \bmod n$. Invert s_{i} means set new value of s_{i} to ' 0 ' if it was equal to ' 1 ', and set it to ' 1 ' otherwise.
Your goal is to make $s_{i}=t_{i}$ for all i in at most 100000 operations.
For each test in this problem, the solution exists. Note that for some pairs of strings you can't get one from other (for example " 0101 " and " 1010 "), but there are no such strings in the tests of this problem.

Input

The first line of input contains a binary string s.
The second line of input contains a binary string t.
$2 \leq|s|=|t| \leq 100$.

Output

In the first line print $m(0 \leq m \leq 100000)$: the number of operations.
In the next line print m integers $i_{1}, i_{2} \ldots, i_{m}\left(0 \leq i_{j} \leq n-1\right)$: operations in the order in which you need to perform them. Note, that when you are doing operation on index i, s_{i} should be equal to $s_{(i+1) \bmod n}$, and after this operation s_{i} and $s_{(i+1)} \bmod n$ will be changed.
Note that you don't necessarily need to minimize m.
It is guaranteed that there is at least one solution. If there are several possible solutions, you can print any.

Examples

standard input	standard output	
000	1	
011	1	
0000	2	
1111	0	
	2	
110	2	
011	0	
	1	

