Problem H. Equal MEX

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You have an array $a_{1}, a_{2}, \ldots, a_{n}$.
You need to find the number of ways to split it into non-empty subsegments, such that all MEXes of these subsegments are equal. MEX of subsegment $[l \ldots r]$ is equal to minimal non-negative integer x, such that x is not present at this segment.
As this number may be very big, you only need to output it modulo 998244353.

Input

The first line of input contains one integer $t(1 \leq t \leq 300000)$: the number of test cases.
The first line of each test case contains one integer $n(1 \leq n \leq 300000)$: the number of integers in the given array. The next line of each testcase contains n space-separated integers $a_{1}, a_{2}, \ldots, a_{n}\left(0 \leq a_{i} \leq n\right)$: the given array.
It is guaranteed that the sum of n is at most 300000 .

Output

For each test case one integer: the number of ways to split a given array into non-empty subsegments with equal MEX, modulo 998244353.

Example

	standard input		standard output			
4						
6						1
0	0	0	1	1	1	
5						
0	1	0	1	0		
4						
0	0	0	0			
3						
3	3	3				

