

Problem H. Equal MEX

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	256 mebibytes

You have an array a_1, a_2, \ldots, a_n .

You need to find the number of ways to split it into non-empty subsegments, such that all MEXes of these subsegments are equal. MEX of subsegment $[l \dots r]$ is equal to minimal non-negative integer x, such that x is not present at this segment.

As this number may be very big, you only need to output it modulo 998 244 353.

Input

The first line of input contains one integer t $(1 \le t \le 300\,000)$: the number of test cases.

The first line of each test case contains one integer n $(1 \le n \le 300\,000)$: the number of integers in the given array. The next line of each testcase contains n space-separated integers a_1, a_2, \ldots, a_n $(0 \le a_i \le n)$: the given array.

It is guaranteed that the sum of n is at most $300\,000$.

Output

For each test case one integer: the number of ways to split a given array into non-empty subsegments with equal MEX, modulo 998 244 353.

Example

standard input	standard output
4	1
6	3
0 0 0 1 1 1	8
5	4
0 1 0 1 0	
4	
0 0 0 0	
3	
3 3 3	