Problem I. Cactus is Money

Input file: Output file: Time limit: Memory limit:
standard input standard output
2 seconds 256 mebibytes

A Cactus graph is a simple connected undirected graph where each edge lies in at most one simple cycle.
You have a cactus graph, each edge has two non-negative integer weights a_{i}, b_{i}.
Your goal is to find the spanning tree of given cactus with a minimum value of $\left(\sum a_{i}\right) \cdot\left(\sum b_{i}\right)$, where the sum is taken among all edges which are present in spanning tree.

Input

The first line contains n, m, denoting the number of vertices and edges of the cactus graph. ($1 \leq n \leq 50000,0 \leq m \leq 250000$)
In the next m lines, four integers s, e, a_{i}, b_{i} denoting endpoints of the i-th edge and its weights are given. $\left(1 \leq s, e \leq n, s \neq e, 0 \leq a_{i}, b_{i} \leq 50000\right)$.
It is guaranteed that the graph is connected, it does not contain loops or multiple edges, and every edge belongs to at most one simple cycle.

Output

Output one integer: minimum possible value of $\left(\sum a_{i}\right) \cdot\left(\sum b_{i}\right)$, where the sum is taken among all edges which are present in spanning tree.

Example

standard input				
3	3			0
1	2	0	1000	
2	3	0	1000	
3	1	1	1	standard output

