2022 Canadian Computing Olympiad
 Day 1, Problem 1
 Alternating Heights

Time Limit: 2 seconds

Problem Description

Troy is planning to take a group photo of the students at CCO and has asked you for help.
There are K students, numbered from 1 to K. Troy has forgotten the students' heights, but remembers that no two students have the same height.

Troy has prepared a sequence $A_{1}, A_{2}, \ldots, A_{N}$ representing the order of students in the group photo, from left to right. It is possible for a student to appear multiple times in A. You aren't sure how this group photo would be taken, but you're unwilling to assume that Troy made a mistake.

Troy will ask you Q queries of the form $x y$, which is a compact way of asking "Given the sequence of students $A_{x}, A_{x+1}, \ldots, A_{y}$, can their heights form an alternating sequence?" More precisely, we denote the height of the i th student as $h[i]$. If there exists an assignment of heights $h[1], h[2], \ldots, h[K]$ such that $h\left[A_{x}\right]>h\left[A_{x+1}\right]<h\left[A_{x+2}\right]>h\left[A_{x+3}\right]<\ldots h\left[A_{y}\right]$, answer YES; otherwise answer NO.

Note that each of the Q queries will be independent: that is, the assignment of heights for query i is independent of the assignment of heights for query j so long as $i \neq j$.

Input Specification

The first line of input will contain three space-separated integers N, K, and Q.
The second line of input will contain the array $A_{1}, A_{2}, \ldots, A_{N}\left(1 \leq A_{i} \leq K\right)$.
The next Q lines will each contain a query of the form of two space-separated integers x and $y(1 \leq x<y \leq N)$.

Marks Awarded	Bounds on N	Bounds on K	Bounds on Q
4 marks	$2 \leq N \leq 3000$	$K=2$	$1 \leq Q \leq 10^{6}$
6 marks	$2 \leq N \leq 500$	$2 \leq K \leq \min (N, 5)$	$1 \leq Q \leq 10^{6}$
7 marks	$2 \leq N \leq 3000$	$2 \leq K \leq N$	$1 \leq Q \leq 2000$
8 marks	$2 \leq N \leq 3000$	$2 \leq K \leq N$	$1 \leq Q \leq 10^{6}$

Output Specification

Output Q lines. On the $i^{\text {th }}$ line, output the answer to Troy's i th query. Note that the answer will be either YES or NO.

Sample Input
633
112312
12
25
26
Output for Sample Input
NO
YES
NO

Explanation of Output for Sample Input
For the first query, we will never have $h[1]>h[1]$ so the answer is no.
For the second query, one solution to $h[1]>h[2]<h[3]>h[1]$ is $h[1]=160 \mathrm{~cm}, h[2]=140 \mathrm{~cm}$, $h[3]=180 \mathrm{~cm}$. Another solution could be $h[1]=1.55 \mathrm{~m}, h[2]=1.473 \mathrm{~m}, h[3]=1.81 \mathrm{~m}$.

For the third query, we cannot have both $h[1]>h[2]$ and $h[1]<h[2]$.

