Problem H. Subspace

Input file:	standard input
Output file:	standard output
Time limit:	1 second
Memory limit:	512 mebibytes

bobo is a big fan of linear algebra! He plans to count the number of k-dimension subspaces in \mathbb{F}_q^n modulo p.

For those who are not familiar with linear algebra:

- \mathbb{F}_q is the set $\{0, 1, \ldots, q-1\}$, with addition and multiplication modulo q defined on;
- \mathbb{F}_q^n is the *n*-dimension vector space $\{(x_1, x_2, \dots, x_n) : x_1, x_2, \dots, x_n \in \mathbb{F}_q\};$
- A subset $K \subseteq \mathbb{F}_q^n$ is a subspace, if and only if for all $\mathbf{p}, \mathbf{q} \in K$, $\mathbf{p} + \mathbf{q} \in K$;
- The dimension of subspace K is the cardinality of the maximal independent subset;
- A subset $\{\mathbf{p}_1, \mathbf{p}_2, \dots, \mathbf{p}_k\} \subseteq K$ is called independent if and only if equation $c_1 \cdot \mathbf{p}_1 + c_2 \cdot \mathbf{p}_2 + \dots + c_k \cdot \mathbf{p}_k = 0$ has only solution $c_1 = c_2 = \dots = c_k = 0$.

Input

4 integers q, n, k, p $(2 \le q \le 10^9, 1 \le k \le n \le 10^9, 2 \le p \le 2 \cdot 10^5).$

It is guaranteed that p and q are prime numbers.

Output

A single integer denotes the number of subspaces.

Examples

standard input	standard output
2 3 2 100003	7