Problem H. Subspace

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1 second
512 mebibytes
bobo is a big fan of linear algebra! He plans to count the number of k-dimension subspaces in \mathbb{F}_{q}^{n} modulo p.

For those who are not familiar with linear algebra:

- \mathbb{F}_{q} is the set $\{0,1, \ldots, q-1\}$, with addition and multiplication modulo q defined on;
- \mathbb{F}_{q}^{n} is the n-dimension vector space $\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{F}_{q}\right\}$;
- A subset $K \subseteq \mathbb{F}_{q}^{n}$ is a subspace, if and only if for all $\mathbf{p}, \mathbf{q} \in K, \mathbf{p}+\mathbf{q} \in K$;
- The dimension of subspace K is the cardinality of the maximal independent subset;
- A subset $\left\{\mathbf{p}_{1}, \mathbf{p}_{2}, \ldots, \mathbf{p}_{k}\right\} \subseteq K$ is called independent if and only if equation $c_{1} \cdot \mathbf{p}_{1}+c_{2} \cdot \mathbf{p}_{2}+\cdots+c_{k} \cdot \mathbf{p}_{k}=0$ has only solution $c_{1}=c_{2}=\cdots=c_{k}=0$.

Input

4 integers $q, n, k, p\left(2 \leq q \leq 10^{9}, 1 \leq k \leq n \leq 10^{9}, 2 \leq p \leq 2 \cdot 10^{5}\right)$.
It is guaranteed that p and q are prime numbers.

Output

A single integer denotes the number of subspaces.

Examples

standard input	standard output	
232100003	7	

