Problem K. New Level

Time limit:
2 seconds
Memory limit: 512 megabytes

Robocity has n crossroads connected by bidirectional roads. There are m roads in total, and all crossroads are reachable from each other. There is a level assigned to each crossroad specified by a number from 1 to k, inclusive. Any pair of crossroads directly connected by a road has distinct levels.
The city leaders are planning a reform. Namely, they want to assign new levels to crossroads, so that each level still has a value from 1 to k, connected crossroads would have different levels, and an additional condition has to be met: for each pair of crossroads u and v there must exist a path between them, such that any two adjacent crossroads along it have levels that differ by 1 modulo k.
Formally, for each pair of crossroads (u, v) there should exist a sequence of crossroads p_{1}, \ldots, p_{l}, such that:

- $p_{1}=u$;
- $p_{l}=v$;
- for each i from 1 to $l-1$, crossroads p_{i} and p_{i+1} are connected, and either their levels differ by one, or one of them has level of 1 and another has level of k.

Robocity government is convinced that such level assignment exists and asks you to find it.

Input

The first line contains three integers $n, m, k(1 \leq n, m, k \leq 500000)$, number of crossroads, roads, and levels.

The second line contains n integers $c_{1}, c_{2}, \ldots, c_{n}\left(1 \leq c_{i} \leq k\right), c_{i}$ is the level of the crossroad i.
Then m lines follow, each of them contains two integers $u, v(1 \leq u, v \leq n ; u \neq v)$, a pairs of crossroads connected by a road.
It is guaranteed that there are no two roads connecting the same pair of crossroads, and that there exists a path between each pair of crossroads.

Output

Output n integers $d_{1}, d_{2}, \ldots, d_{n}\left(1 \leq d_{i} \leq k\right)$, the levels of the crossroads in the new assignment.

Example

		standard input				standard output		
4	4	4		4	3	2	1	
1	2	3	1					
1	2							
1	3							
2	3							
3	4							

