

Problem G. Automaton

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

Given n and k, calculate the expected number of vertices in the suffix automaton of a random string of length n over alphabet of size k. If r is the answer, output $r \cdot k^n$ modulo $10^9 + 7$.

Input

The first line contains the number of tests T. Each of the next T lines contains integers n and k $(1 \le k \le n \le 40)$. All tests in the input are different.

Output

Output T lines with answers for tests.

Example

standard input	standard output
3	12
2 2	447
4 3	14972
10 2	

Note

Let S(s) be the set of all substrings of s. Suffix automaton of a string s is the smallest directed acyclic graph with a specified vertex v_0 and an assignment l(e) of characters to all edges of G that satisfies the following property: $S(s) = \{l(e_1) \dots l(e_k) \mid (e_1, \dots, e_k) - a \text{ path starting at } v_0\}.$