Problem G. Automaton

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
2 seconds
512 megabytes

Given n and k, calculate the expected number of vertices in the suffix automaton of a random string of length n over alphabet of size k. If r is the answer, output $r \cdot k^{n}$ modulo $10^{9}+7$.

Input

The first line contains the number of tests T. Each of the next T lines contains integers n and $k(1 \leq k \leq n \leq 40)$. All tests in the input are different.

Output

Output T lines with answers for tests.

Example

\(\left.\begin{array}{|ll|l|}\hline \& standard input \&

\hline 3 \& \& 12

2 \& 2 \& 447

10 \& 2 \& 14972\end{array}\right]\) standard output | |
| :--- |

Note

Let $S(s)$ be the set of all substrings of s. Suffix automaton of a string s is the smallest directed acyclic graph with a specified vertex v_{0} and an assignment $l(e)$ of characters to all edges of G that satisfies the following property: $S(s)=\left\{l\left(e_{1}\right) \ldots l\left(e_{k}\right) \mid\left(e_{1}, \ldots, e_{k}\right)\right.$ - a path starting at $\left.v_{0}\right\}$.

