Problem F. Travel plan

Input file:
Output file:
Time limit:
Memory limit:
standard input
standard output
1.5 seconds

256 megabytes

Bob lives on a magical land. There are n cities and m roads on the land. The length of the i-th road is w_{i}, and the length is an integer between 1 and L. Each road connects two cities. The land can be viewed as a graph of n points and m edges.
This land is magical because Bob was surprised to find that there are no simple circuits with an even total length in this land!
Bob likes to travel. If Bob takes a simple path from x to $y(x<y)$, the happiness value is the greatest common factor (gcd) of the lengths of all roads on the path.
simple path:A path is called a simple path if the vertices on the path do not repeat each other.
simple circuit:A circuit in which the vertices are not repeated except for the first and last vertices is called a simple circuit
Bob wants to count all possible travel paths.
Define $F(k)$ as the total number of travel paths with happiness value k , modulo 998244353.
Please find $F(1) \oplus F(2) \oplus F(3) \oplus \ldots \oplus F(L)$, where \oplus represents XOR.

Input

The first line contains an integer $T(T \leq 500)$-the number of test cases.
The first line of each test case contains 3 integers $n, m, L(1 \leq n, L \leq 100000,1 \leq m \leq 200000)$-number of cities, number of roads, length range of roads.
The next m lines, each line contains 3 integers $u_{i}, v_{i}, w_{i}\left(1 \leq u_{i}, v_{i} \leq n, 1 \leq w_{i} \leq L\right)$-.represents a road of length w_{i} connecting u_{i}, v_{i}.
It is guaranteed that there are no double edges and self-loops.
$1 \leq \sum n, \sum L \leq 500000,1 \leq \sum m \leq 1000000$

Output

For each test case, output a line containing an integer representing the answer.

Example

		standard input		standard output
2		2	6	
3	3	6		
1	2	6		
2	3	4		
3	1	5		
5	4	10		
1	2	10		
1	3	1		
2	4	7		
1	5	4		

