## Problem H. Path

| Input file: | standard input |
| :--- | :--- |
| Output file: | standard output |
| Time limit: | 2 seconds |
| Memory limit: | 256 megabytes |

Given a graph with $n$ vertices and $m$ edges.Each vertex is numbered from 1 to $n$.
Each edge $i$ has its cost $w_{i}$,some edges are common edges and some edges are special edges.
When you pass through a special edge, the next step after passing this edge,you can reach any vertex in the graph. if you goto the vertice which an original edge $i$ can arrived from current vertice, the cost become $w_{i}-K\left(0 \leq w_{i}-K\right)$ (if you used edge $i$ ), otherwise the cost will become 0 (every vertice except the vertice which original edge can arrived from current vertice)
original edge includes all common edges and special edges.
Now you start at $S$,You need to calculate the minimum cost from the starting vertex to each vertex(If there is a situation where you cannot reach, please output " -1 ")

## Input

Each test contains multiple test cases. The first line contains the number of test cases $T$. Description of the test cases follows.

The first line of each test case contains four integers $n, m, S, K$
The next $m$ lines each line contains four integers $x, y, w, t$ represent an directed edge connect $x$ and $y$ with cost $w, t=0$ represents it's a common edge, $t=1$ represents it's a special edge.
$1 \leq \sum m, \sum n \leq 10^{6}, 1 \leq x, y, S \leq n, 1 \leq w, K \leq 10^{9}$
$K \leq w_{i}(1 \leq i \leq m)$

## Output

For each test case, print $n$ integer in a line - the answer to the problem. There is a space at the end of the line for each line.when you cannot reach, please output -1 .

## Example

| standard input | standard output |
| :---: | :---: |
| 2 | 045810 |
| 5411 | 04588 |
| 1240 |  |
| 1350 |  |
| 3431 |  |
| 4530 |  |
| 5311 |  |
| 1240 |  |
| 1350 |  |
| 3431 |  |

