Problem J. Walk

Input file: standard input
Output file: standard output
Time limit: $\quad 2$ seconds
Memory limit: $\quad 512$ megabytes

There is currently a grid of $n \times m$. You have to walk start at $\left(1, k_{1}\right)\left(\forall 1 \leq k_{1} \leq m\right)$, end at $\left(n, k_{2}\right)\left(\forall 1 \leq k_{2} \leq m\right)$.For every possible path, there will be a value V.The initial value of V is $f\left[k_{1}\right]$ when you start at $\left(1, k_{1}\right)$. When you reach (x, y), the value will become $V \times f[y]$. When you are located at (x, y), you can walk to $(x+1, P)(P \leq y+S(S(S(y))))$
Where $S(x)=\lfloor\log 2(\max (1, x)))\rfloor$
Calculate the sum of the value of all the ways module 998244353.
Two ways A, B think different if $\exists(x, y), A$ passes (x, y) but B not.

Input

The first line contains two integers n, m
The second line contains m integers $f_{1}, f_{2}, \ldots, f_{m}$
$1 \leq n, m \leq 10^{5}, 0 \leq f_{i} \leq 10^{9}$

Output

print one integer - the answer to the problem.

Example

	standard input			
5	4		7770	standard output
1	2	3	4	

