Problem J. Walk

Input file:	standard input
Output file:	standard output
Time limit:	2 seconds
Memory limit:	512 megabytes

There is currently a grid of $n \times m$. You have to walk start at $(1, k_1)(\forall 1 \leq k_1 \leq m)$, end at $(n, k_2)(\forall 1 \leq k_2 \leq m)$. For every possible path, there will be a value V. The initial value of V is $f[k_1]$ when you start at $(1, k_1)$. When you reach (x, y), the value will become $V \times f[y]$. When you are located at (x, y), you can walk to $(x + 1, P)(P \leq y + S(S(S(y))))$

Where $S(x) = \lfloor log2(max(1, x))) \rfloor$

Calculate the sum of the value of all the ways module 998244353.

Two ways A, B think different if $\exists (x, y), A$ passes (x, y) but B not.

Input

The first line contains two integers n,m

The second line contains m integers $f_1, f_2, ..., f_m$

 $1 \le n, m \le 10^5, 0 \le f_i \le 10^9$

Output

print one integer — the answer to the problem.

Example

standard input	standard output
54	7770
1 2 3 4	