1007 Snatch Groceries

Time Limit: 2000/1000 MS (Java/Others)

Memory Limit: 65536/65536 K (Java/Others)

Problem Description

“‘SNATCH GROCERIES first, then get a covid test” has quickly become an anthem for the lockdown
that started suddenly in Shanghai in the early hours of March 28th. We can describe scenes of panic
buying—qiang cai, or snatching groceries—and the threat of being locked out of one’s home amid a
frenzied bid to control an outbreak of covid-19 in China’s main business and finance hub. Here is the
question, how does the server determine who succeeded When millions of people press the order
button on their mobile phones at the same time.

Processing such a large number of requests requires a distributed system. In a distributed system,
time is a tricky business, because communication is not instantaneous: it takes time for a message to
travel across the network from one machine to another. The time when a message is received is
always later than the time when it is sent, but due to variable delays in the network, we don’t know
how much later. This fact sometimes makes it difficult to determine the order in which things happened

when multiple machines are involved

Moreover, each machine on the network has its own clock, which is an actual hardware device: usually
a quartz crystal oscillator. These devices are not perfectly accurate, so each machine has its own
notion of time, which may be slightly faster or slower than on other machines. It is possible to
synchronize clocks to some degree: the most commonly used mechanism is the Network Time
Protocol (NTP), which allows the computer clock to be adjusted according to the time reported by a
group of servers. The servers in turn get their time from a more accurate time source, such as a GPS

receiver.

Modern computers have at least two different kinds of clocks: a time-of-day clock and a monotonic
clock. A time-of-day clock does what you intuitively expect of a clock: it returns the current date and
time according to some calendar (also known as wall-clock time). For example,
clock_gettime(CLOCK_REALTIME) on Linux return the number of seconds (or milliseconds) since the
epoch: midnight UTC on January 1, 1970, according to the Gregorian calendar, not counting leap
seconds. Some systems use other dates as their reference point. Time-of-day clocks are usually
synchronized with NTP,



You may be able to read a machine’s time-of-day clock with microsecond or even nanosecond
resolution. But even if you can get such a fine-grained measurement, that doesn’t mean the value is
actually accurate to such precision. In fact, it most likely is not—as mentioned previously, the drift in an
imprecise quartz clock can easily be several milliseconds, even if you synchronize with an NTP server
on the local network every minute. With an NTP server on the public internet, the best possible
accuracy is probably to the tens of milliseconds, and the error may easily spike to over 100 ms when
there is network congestion.

Thus, it doesn’t make sense to think of a clock reading as a point in time—it is more like a range of
times, within a confidence interval: for example, a system may be 95% confident that the time now is
between 10.3 and 10.5 seconds past the minute, but it doesn’t know any more precisely than that. If
we only know the time +/— 100 ms, the microsecond digits in the timestamp are essentially
meaningless.

An interesting exception is Google’s TrueTime API in Spanner, which explicitly reports the confidence
interval on the local clock. When you ask it for the current time, you get back two values: [earliest,
latest], which are the earliest possible and the latest possible timestamp. Based on its uncertainty
calculations, the clock knows that the actual current time is somewhere within that interval. The width
of the interval depends, among other things, on how long it has been since the local quartz clock was
last synchronized with a more accurate clock source.

TL;DR: Spanner implements snapshot isolation across data centers in this way. It uses the clock’s
confidence interval as reported by the TrueTime API, and is based on the following observation: if you
have two confidence intervals, each consisting of an earliest and latest possible timestamp (4 =
[Acariiests Atatest]s B = [Beartiest » Blatest]), @and those two intervals do not overlap (i.e., Aeariiest <
Ajptest < Beartiest < Blatest), then B definitely happened after A——there can be no doubt. Only if
the intervals overlap are we unsure in which order A and B happened.

Now we use Spanner as a solution, there are millions of people snatching groceries, and everyone is
given the clock’s confidence interval. The server executes each request in chronological order, and
terminate in case of intervals overlap. Here is the question, how many people can get their food before
the server is terminated.

Input

First line has one integer T', indicating there are 1’ test cases. In each case:
First line has one integers n, indicating there are n people.

For next n lines, each line has 2 integers earliest, latest, indicates the clock’s confidence interval.



T <10,1 <n <10%0 < earliest; < latest; < 10°

Output

In each case, print one integer, indicates the answer.

Sample Input

B N P WU W R W N
a A~ N

Ui w N

Sample Output



