Task: Homework

Little Helena recently finished her first year of primary school. She is a model student, has straight A's, and has a huge passion for mathematics. She is currently on a well-deserved vacation with her family, but she's starting to miss her daily math homework. Luckily, her older brother decided to quench her intellectual thirst, and gave her the following problem.

A valid expression is defined recursively as follows:

- the string ? is a valid expression which represents a number.
- if A and B are valid expressions, then so are $\min (A, B)$ and $\max (A, B)$, where the former represents a function returning the smaller of its two arguments, while the latter represents a function returning the larger of its two arguments.

For example, expressions min(min(?,?), min(?,?)) and max (?,max(?,min(?,?))) are valid according to the definition above, but expressions ??, $\max (\min (?))$ and $\min (?, ?, ?)$ are not.

Helena is given a valid expression containing a total of N question marks. Each question mark is to be replaced with a number from the set $\{1,2, \ldots, N\}$ in such a way that each number from this set appears exactly once in the expression. In other words, the question marks are replaced by a permutation of the numbers from 1 to N.

Once the question marks have been replaced by numbers, the expression can be evaluated and its value will be an integer between 1 and N. Considering all the ways of assigning numbers to question marks, how many different values can Helena obtain after evaluating the expression?

Input

The first and only line contains a single valid expression.

Output

Output a single integer between 1 and N, the number of different values obtainable by evaluating the expression.

Scoring

In all subtasks it holds that $2 \leq N \leq 1000000$.
Subtask Score Constraints
$1 \quad 10 \quad N \leq 9$
$2 \quad 13 \quad N \leq 16$
313 Each function in the expression has at least one question mark as an argument.
$4 \quad 30 \quad N \leq 1000$
$5 \quad 34$ No additional constraints.

Examples

input	input	input
$\min (\min (?, ?), \min (?, ?))$	$\max (?, \max (?, \min (?, ?)))$	$\min (\max (?, ?), \min (?, \max (?, ?)))$
output	output	output
1	2	3

Clarification of the first example:

No matter how the numbers are assigned, the value of the resulting expression will always equal to the minimum of the set $\{1,2,3,4\}$, which is 1 . Therefore, there is only one possible value.

Clarification of the second example:

The numbers 3 and 4 can be obtained as $4=\max (4, \max (3, \min (2,1)))$ and $3=\max (3, \max (2, \min (1,4)))$. It can be shown that values 1 and 2 are not attainable and so the answer is 2 .

