Problem A. Equipment Upgrade

Input file:
Output file:
Memory limit:
standard input
standard output
512 megabytes

Little Q is playing an RPG game. In this game, the weapon can be upgraded. Initially, the weapon is at level 0 , and the upper bound of the level is n. Assume the current level is $i(0 \leq i<n)$, Little Q can pay c_{i} coins to upgrade the weapon, the next level will be $i+1$ with probability p_{i}, and will be $i-j$ $(1 \leq j \leq i)$ with probability $\left(1-p_{i}\right) \frac{w_{j}}{\sum_{k=1}^{i} w_{k}}$.
Though Little Q is very rich, he is still wondering the expected number of coins for him to upgrade the weapon from level 0 to level n. Please write a program to help him.

Input

The first line contains a single integer $T(1 \leq T \leq 300)$, the number of test cases. For each test case:
The first line contains a single integer $n(2 \leq n \leq 100000)$, denoting the upper bound of the level.
The i-th $(1 \leq i \leq n)$ of the following n lines contains two integers P_{i-1} and $c_{i-1}\left(1 \leq P_{i-1}, c_{i-1} \leq 100\right)$, describing the success probability and the cost for level $i-1$. Here $p_{i-1}=\frac{P_{i-1}}{100}$. It is guaranteed that $P_{0}=100$.
The next line contains $n-1$ integers $w_{1}, w_{2}, \ldots, w_{n-1}\left(1 \leq w_{i} \leq 100\right)$.
It is guaranteed that the sum of all n is at most 500000 .

Output

For each test case, output a single line containing an integer, denoting the expected number of coins to level n.
More precisely, if the answer is $\frac{p}{q}$, you should output the minimum non-negative integer r such that $q \cdot r \equiv p(\bmod 998244353)$. You may safely assume that such r always exists in all test cases.

Example

standard input	standard output
2	12
2	228170152
1001	
505	
1	
3	
1001	
702	
503	
23	

