Problem H. Laser Alarm

Input file:	standard input
Output file:	standard output
Memory limit:	512 megabytes

The museum in Byteland has plenty of jewels on display, secured by n laser alarms. Each laser alarm can be considered as a segment in the 3D space. In this task, your job is to test the quality of the laser alarm system. You need to find a plane such that it touches the most laser alarms. Note that if the plane touches the endpoint of a segment, it should also be counted.

Input

The first line contains a single integer $T(1 \leq T \leq 10)$, the number of test cases. For each test case:
The first line contains a single integer $n(1 \leq n \leq 50)$, denoting the number of laser alarms.
Each of the following n lines contains six integers $x_{i}, y_{i}, z_{i}, x_{i}^{\prime}, y_{i}^{\prime}$ and $z_{i}^{\prime}\left(1 \leq x_{i}, y_{i}, z_{i}, x_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{\prime} \leq 100\right)$, describing a segment that connects $\left(x_{i}, y_{i}, z_{i}\right)$ and $\left(x_{i}^{\prime}, y_{i}^{\prime}, z_{i}^{\prime}\right)$. It is guaranteed that the two endpoints of each segment do not coincide.

Output

For each test case, output a single line containing an integer, denoting the maximum possible number of laser alarms that can be touched.

Example

				standard input		standard output
1						
4						
1	1	1	1	1	2	
1	1	10	1	1	11	
1	10	1	1	10	2	
10	1	1	10	1	2	

